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PREFACE

HArDY in his thirties held the view that the late years of a mathe-
matician’s life were spent most profitably in writing books; I remember a
particular conversation about this, and though we never spoke of the
matter again it remained an understanding. The level below his best at
which a man is prepared to go on working at full stretch is a matter of
temperament; Hardy made his decision, and while of course he con-
tinued to publish papers his last years were mostly devoted to books;
whatever has been lost, mathematical literature has greatly gained. All
his books gave him some degree of pleasure, but this one, his last, was his
favourite. When embarking on it he told me that he believed in its value
(as he well might), and also that he looked forward to the task with
enthusiasm. He had actually given lectures on the subject at intervals
ever since his reburn to Cambridge in 1931, and had at one time or another
lectured on everything in the book except Chapter XIII.

The title holds curious echoes of the past, and of Hardy’s past. Abel
wrote in 1828: ‘ Divergent series are the invention of the devil, and it is
shameful to base on them any demonstration whatsoever.” In the
ensuing period of critical revision they were simply rejected. Then came
a time when it was found that something after all could be done about
them. This is now a matter of course, but in the early years of the cen-
tury the subject, while in no way mystical or unrigorous, was regarded
as sensational, and about the present title, now colourless, there hung
an aroma of paradox and audacity.

J. E. LITTLEWOOD
August 1948



NOTE

Proressor Hardy, who died on 1 December 1947, had sent the galleys
of Chapters I-X to the press, and read the remaining galleys, before he
felt unable to continue the work. Dr. H. G. Eggleston and 1. who had
also been reading the proofs, completed their revision in both galley and
page form. Professor W. W. Rogosinski read the manuscript of Chapters
I-IT and XI-XII, and Miss S. M. Edmonds that of Chapter X; and I also
read the book in manuscript. Dr. Eggleston checked all the references,
drew up the lists of authors and definitions, and drafted the general
index; and I added the note on conventions. My own task has been
greatly lightened by Dr. Eggleston’s help, and also by the care and
consideration of the Clarendon Press.

L. 8. BOSANQUET
August 1948
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NOTE ON CONVENTIONS

A FEW conventions and familiar results, not emphasized in the text,
are stated here.

StirLING’S THEOREM
1t is proved in § 13.11 that, for large real «,
log T(z+1) = (x+logx—z+}log 27+ O(x7?),
and generally
log T'(x+41) = (z+1)logx—x+}log 2w+

# 3 R o

These formulae are used freely in the earlier chapters. The second is
assumed in § 6.10 for complex z (cf. Whittaker and Watson, 251-3).

BmwomIAL COEFFICIENTS
Forn = 0,1,...,

(a) a(a—1)...(a—n+ )

n n!

(74F) = GHDEED B (")

B n! n
It follows from Stirling’s theorem that, if 8 A= —1, —2,..., then
n+B nb -
(") = syt Semeroms s,

SUMMATION CONVENTIONS

B
> f(n) denotes Y f(n);
. L. o a<n<fB
if B < « this is zero.
>, written without limits, usually denotes >, or ¥ if a term of zero
0 1
rank is not defined, but other conventions are sometimes used. Con-

ventions are given on pp. 42, 96, 131-2, 139, 162, 205, 215, 227, 239-40,
320, 350, and 372.

DIFFERENCES
Ay, = Uy—Up 1y, Adu, = uy,

New, = A A1y, (k=1,2,.).



xvi NOTE ON CONVENTIONS

INTEGRATION CONVENTIONS

‘Integrable in (a,b)’ means ‘integrable in the Lebesgue sense in
(a,b)’.

All functions that occur are assumed to be measurable. Thus, if (a, b)
is a finite interval, ‘f = O(1) in (a,b)’ implies ‘f is integrable in (a, b) .

-] X
f denotes lim f , if this limit exists, i.e. if the integral is convergent.
0 X—o g

a0
f , written without limits, usually denotes f , but other conventions
0

are sometimes used. Conventions are given on pp. 12, 50, 98, 110, 115,
135, 156, 166,.215, 235, 257, 285, 296, 327, 330, and 338.
THE CrAssEs L anp Lt (r > 0)

‘f is L(a,b)’ means ‘[ f is measurable and] |f|" is integrable in (a,b)’.

‘fis L’ means ‘fis LV’. Thus ‘f is L(0, 00)’ is equivalent to ¢ ffdx is
0
absolutely convergent’.

CONSTANTS
Capital letters, such as H, K,..., are used to denote numbers indepen-
dent of the variables under consideration, but are not necessarily the
same at each occurrence.
0,07,0g,0 AND ~.
If § > 0, then
f=0(¢)" means ‘|f] <H¢’,
‘f = O(¢)’ [or Og(¢)] means ‘f> —H¢’ [or < HY],
- f=o$) means ‘f/$ >0,
‘f~¢’ means ‘fl¢—>1°7F
The symbol ~ is also used for ‘has the asymptotic series’, ‘has the
Fourier series’, and ‘is the Fourier transform of’.

SIGN OF 2
z/|z| (|| # 0)

Sg“x::{ 0 (jz| = 0).

INTEGRAL PART OF z
[«] denotes the algebraically greatest integer not exceeding z.

1 Here, of course, ¢ may be negative.




I
INTRODUCTION

1.1. The sum of a series. The series
[
%: a, = ay+a,+as+...
is said to be convergent, to the sum s, if the ‘partial sum’

8, = @g+a,+...4+a,

tends to a finite limit s when n — c0; and a series which is not con-
vergent is said to be divergent. Thus the series

(1.1.1) 1—141—1+4.., (1.1.2) 1—24+3—4+...,
(1.1.3)  1—2+44—8+..., (1.1.4)  1—114-21—314...,
(1.1.5) 14141414, (1.1.6)  14+-24448+...,

are divergent. The series

(1.1.7) 1eiffe2i0f ., (1.1.8)  }--cosf-t-cos20+...,
are divergent for all real §, and
(1.1.9) sin §-4sin 26 -sin 364-...

is divergent except when 6 is a multiple of =, when it converges to the
sum 0.

The definitions of convergence and divergence are now commonplaces
of elementary analysis. The ideas were familiar to mathematicians
before Newton and Leibniz (indeed to Archimedes); and all the great
mathematicians of the seventeenth and eighteenth centuries, however
recklessly they may seem to have manipulated series, knew well enough
whether the series which they used were convergent. But it was not
until the time of Cauchy that the definitions were formulated generally
and explicitly.

Newton and Leibniz, the first mathematicians to use infinite series
systematically, had little temptation to use divergent series (though
Leibniz played with them occasionally). The temptation became
greater as analysis widened, and it was soon found that they were
useful, and that operations performed on them uncritically often led
to important results which could be verified independently. We give
a few simple examples in the next section; in Ch. IT we shall give others,

of greater importance, from the work of the classical analysts.
4780 B



2 INTRODUCTION [Chap. I

1.2. Some calculations with divergent series. We know that
(1.2.1) 1zt = —
‘ 1—x
if |x| < 1. It seems plain that, if we are to attribute a ‘sum’, in some
sense, to the series for other x, this sum should be formally the same.
For (i) it would be very inconvenient if the formula varied in different

cases; (ii) we should expect the sum s to satisfy the equations

s = l4a+ta*+23+... = 14a(l4a+a2+...) = 14as;
and (iii) the left-hand side of (1.2.1) is the result of performing the
division implied by the right, so that there is certainly one sense of ‘="
with which (1.2.1) may be said to be true for all .

(1) Let us assume then that (1.2.1) is, in some sense, true for all
(except perhaps for x = 1, which plainly presents special difficulties),
and operate on the formula in an entirely uncritical spirit.

Putting x = €%, where 0 << 6 < 2 (so0 that 2 5= 1), we obtain
(1.2.2) 1+4ef4 204 | = (1—ei)-1 = 14 1icot 6,
and so
(1.2.3) 4+cosf+tcos26+-... =0, (1.2.4) sinf+sin26--... = }cot 16,
for 0 < 8 < 2#. Changing 6 into §+, we obtain

(1.2.5) }—cosf+-cos20—... =0, (1.2.6) sinf—sin26+... = §tan 0,
for —7 < 6 < 7. For § = 0, (1.2.5) gives
(1.2.7) 1—141—.. =1,

(2) We now differentiate (1.2.5) and (1.2.6) repeatedly with respect
to . We thus obtain

(1.2.8) 3 (—1)yn-tnfcosnd =0 (k=1,2,.; —m <0 <),
1
(1.2.9) S (—1)n-tnHigin g — 0,
1
© 2k
(1.2.10) 3 (— 1t sinng — (—1)k(0%) ytan}o,

. @ d 2k+1
(1.2.11) > (—1)»-n2*+lcos nf = (-—1)"(@) tanid,
1

the last three formulae for £ = 0, 1,..., —7 < § < #. In particular,
putting § = 0 in (1.2.8) and (1.2.11), and 6 = = in (1.2.9), and re-
membering that the Taylor’s series for } tan,}6 is

' © 92k+2_ |

ttanif = > —
£, (2t 2)!

2k +1
Bk+10 + ]




1.2] INTRODUCTION 3

where By, is Bernoulli’s number, we obtain

(1.2.12) 12_9% 4 3% —0 (k=1,2,..),
(1.213) 1%a_gmai  — (_1p2o—lp k=01,
. eee 2k+2 k+1 s 4y ’
(1.2.14) %4132k 5l — 0 (k= 0,1,.).
Similarly, starting from
0
(1.2.15) ¢80 g5i0__  — hl‘——}il‘é—é’"" = }secd,

and remembering that
— E, 6%
sec = 14 > —E__,
|
Z (2k)!

where E), is Euler’s number, we obtain (1.2.14) and also

(1.2.16) 12 3% 5% — L(—1)*E, (k=1,2,..).
We observe in passing that (1.2.13), for k = 0, is
(1.2.17) 1—24+-3—4+... =},

which is also the result of squaring (1.2.7) by Cauchy’s rule
(I—141—.)(1—1+1—.)=1.1—(1.141.1)+(1.14+1.14+1.1)—....

(3) If we integrate (1.2.5) from 6 = 0 to § = ¢, and then write 8
again for ¢, we obtain

(1.2.18) sinf—}sin20+4sin30—... =40 (—7 <O <=).
This series is convergent. A second integration gives

1—cos20 1-—cos30
(1.2.19) 1—cosf— o2 + T ammia 102
Here we may include the limits,T and 6§ = = gives
1 1
(1.2.20) 1 +3_2+5—2+°" = }n2.
Since
1 1 1,1 1 1 1 1 1
1+§-§+—5~2+... == 1+—2—é+3—2+.-.—2—2—;—2—... = (l—z)(l+§§+§+...),
we deduce

11 , ' 11
(1.2.21) 1+§§+§+--~ = =%, (1.2.22) 1—2—2+§é-—... = &n?,
and so

(1.2.23) cosO—cos 20 = cos 30_

5% —5r = Lm?—10 (—7 < 0 < 7).

t The series being uniformly convergent for all 4.
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Further integrations lead to the summation of 3 (—1)*~n~% cos nf
and Y (—1)*1n-2¢-1ginnf by means of the Bernoullian functions.

(4) Alternatively, we could, by a more daring calculation, deduce
(1.2.19) from (1.2.7) and (1.2.12), arguing that

S —1yn- Oosn0 & B (n0)2k+2
Z( U Z z( 1 (2k+2)!
(_1 k02k+2 . _
_Z (2k+2)! Z( 1)-1p2k = 102(1—1+1—...) = }62

Indeed we could generalize this argument. Suppose that
f(6) = ay+a, 0*+a,64+...
is convergent for all . Then the argument suggests that

(1.2.24)

=]

z (—1) lf(na) ; (= 1)n Z a(nd)¥ = lg a, 6% 121 (—1)n-1p2-2

=0

1 1 1
= aﬂ(l—z_ 78 +3—2 —,,,)—l—al P(1—1+41—...) = Layn?+1a, 6%
This is plainly not true generally; for example, it is false when
f(6) = e~%: but it is true for quite extensive classes of functions. Thus,
if f(0) is the Bessel function

64
J;,(O) = l -—-2—2+§2--—4'2 ey
it gives
J(20) L 38)
32

=m0 (—m <0 <)

(5) From (1.2.4) we deduce

sin ¢
cos —cos ¢’

3 cosnbsinng = Hoot (-+6)+cob J($—0)) = -
1

and so

@

cos mf—cos mg{: Z sin n¢é
cosf—cos ¢

cos nb(cos mf—cos me)

for any positive integral m. If we integrate this equation from 6 = 0
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to § = = (ignoring any difficulties about the range of § over which it may
be expected to be validt), we obtain

m
f cosmf-—cosme .,  sinmé

cosf—cos¢p  sing ’

(1.2.26)

which may be verified in various ways.
(6) It follows from (1.2.4) and (1.2.6) that

sin 8-sin 30+4-... = 1 cosecd, sin 204-sin 46+ ... = } cotd.
If we multiply these equations by 6, integrate from § = 0 to 0 = 1=,
and observe that

*"0 in(2n+1)0do — " h()sin om0 df = (—1)»1T
bf smfizsn = (2n+1)2’ bf - Z”;:
we obtain
7o 11
(1.2.27) [ g0 = 2(1~3—2+5—2*...),
(1]
b
(1.2.28) f fcot 6 df = Lmwlog2.
0

These formulae also may be verified independently.

1.3. First definitions. The results of the formal calculations of
§ 1.2 are correct wherever they can be checked: thus all of the formulae
(1.2.18)—(1.2.28), (1.2.25), and (1.2.26)—(1.2.28) are correct. It is natural
to suppose that the other formulae will prove to be correct, and our
transformations justifiable, if they are interpreted appropriately. We
should then be able to regard the transformations as shorthand repre-
sentations of more complex processes justifiable by the ordinary canons
of analysis. It is plain that the first step towards such an interpreta-
tion must be some definition, or definitions, of the ‘sum’ of an infinite
series, more widely applicable than the classical definition of Cauchy.

This remark is trivial now: it does not occur to a imodern mathe-
matician that a collection of mathematical symbols should have a
‘meaning’ until one has been assigned to it by definition. It was not
a triviality even to the greatest mathematicians of the eighteenth
century. They had not the habit of definition: it was not natural to

1 We have to expect trouble with (1.2.4) for § = 0 or § = 2, since the left-hand side
vanishes identically and the right-hand side has an infinity, and here for values of ¢
for which cos § = cos ¢. But it is not unreasonable to suppose that these difficulties

will disappear when we multiply by the factor cos mf—cos m¢ ; and the result seems to
justify our expectation.
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them to say, in so many words, ‘by X we mean Y. There arereservations
to be made, to which we shall return in §§1.6-7; but it is broadly true
to say that mathematicians before Cauchy asked not ‘ How shall we define
1—1+41—...2° but ‘What s 1—1-4+1-—...?°, and that this habit of mind
led them into unnecessary perplexities and controversies which were
often really verbal.

It is easy now to pick out one cause which aggravated this tendency,
and made it harder for the older analysts to take the modern, more
‘conventional’, view. It generally seems that there is only one sum
which it is ‘reasonable’ to assign to a divergent series: thus all ‘natural’
calculations with the series (1.1.1) seem to point to the conclusion that
its sum should be taken to be . We can devise arguments leading to
a different value,} but it always seems as if, when we use them, we are
somehow ‘not playing the game’.

The reason for this is fairly obvious. The simplest argument for
127 is‘s=1—1+1—... =1—(1—1+41—..) = 1—s, and so s = §’:
we thus obtain the value , whatever our definition, provided only
that it satisfies certain very natural conditions.

Let us suppose, for example, that we have given any definition of
the sum of a series which satisfies the following axioms:

(A) if Ya,=3s then > ka,=ks;
(B) if Ya,=s and 3b,=1¢ then 3 (a,+b,)=s-+t;
(C) if apta,+a,+...=s then a;4a,+ag+... = s—a,, and con-

versely.
Actually, all definitions which we shall use satisfy (4) and (B), and
most, though not all, satisfy (C). Then, if 1—1+1—... = s, we have

s=1—1F..=14+(—14+1—.) = 1—(1—1+..) = 1—s:
here we have used only (4) and (C). Similarly, if 1—24-3—4+4-... = s,
we have

§=1—243—.. = 1+(—2+3—4+..) = 1—(2—34+4—..)

= 1—(1—14+1—.)—(1—243—..) = 1—}—s,

and so s = }, in agreement with (1.2.17). Here we have used all of
(4), (B), and (C).

We pick out here four of the large number of useful definitions which

we shall have occasion to use later. We shall make systematic use of
the following notations. If we define the sum of 3 a,, in some new

1 See § 1.6(2).
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sense, say the ‘Pickwickian’ sense, as s, we shall say that > a, is
summable (P), call s the P sum of ¥ a,, and write

Sa,=s (P).
We shall also say that s is the P limit of the partial sum s,, and write
s, > s (P).
Our choice of letters to be associated with different definitions will be

determined mainly by convenience, but sometimes also by historical
considerations.

(1) If s, = ay+a,+...+a, and

(1.3.1) lim S0 8t F o _
n—>0 n41

then we call s the (C, 1) sum of > a, and the (C, 1) limit of s,,.

(2) If 3 a,z™ is convergent for 0 <z < 1 (and so for all z, real or
complex, with |z| < 1), f(z) is its sum, and
(1.3.2) lim f(x) =s,

z—>1—-0 .

b

then we call s the A sum of ) a,,.

(8) If 3 @, x™ is convergent for small z, and defines a function f(z) of
the complex variable z, one-valued and regular in an open and connected
region containing the origin and the point z = 1; and f(1) = s; then
we call s the € sum of 3 a,. The value of s may naturally depend on
the region chosen.

(4) Our fourth definition requires a little more explanation. Suppose
that the series > @, 2™ converges for small z, and that

= Y = =
(1.3.3) x = Ty’ Yy = =
so that y = 1 corresponds to # = 1. Then, for small z and y, we have

zf(x) = ganx"'*l = aol_?iy-l-al( 32 )2+ - y)3+
=20 2 [T = Z 2( "

Inverting the order of summation, we find t

zf(x) = zy"“z (n p)a = gy"“i( ) Z)bny"“,

for small y, Where

(1.3.4) by =a,, b, = a0+(71")a1+(g)a2+...+an.
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If the y-series is convergent for y = }, to sum s, i.e. if

(1.3.5) 360+ 10+ b +... = 3 2771, = s,
then we call s the (E, 1) sum of > a,,.

The letters € and E both stand for Euler, A for Abel, and C for Cesaro. The
reasons for these choices, and for the figures in (C, 1) and (E, 1), will appear later.
The ¢(C, 1)’ definition was used by D. Bernoulli in 1771, but only in the special
case when the series is a periodic oscillating series, i.e. when a, ., = a, for a fixed

p, and agtay+...+ay,_y = 0.

It had been applied to the special series (1.1.1) by Leibniz as early as 1713. But
neither Leibniz nor Bernoulli said in so many words that they were giving a
definition. In modern times it was used implicitly by Frobenius and Hélder in
1880 and 1882; but it does not seem to have been stated formally as a definition
until 1890, when Cesaro published a paper on the multiplication of series in which,
for the first time, a ‘theory of divergent series’ is formulated explicitly. ‘Lorsque
&y, sans tendre vers une limite, admet une valeur moyenne s finie et déterminée
[i.e. when (1.3.1) is true] nous dirons que la série a,+a,+a,+ ... est simplement
indéterminée, et nous conviendrons de dire que s est la somme de la série.’ Cesaro
goes on to consider series ‘r-fois indéterminées’, and proves a general theorem
which will be prominent in Ch. X. Cesaro’s paper has become famous, and his
language now seems almost absurdly modest: ‘il résulte de 14 une classification
des séries indéterminées, qui est sans doute incompléte et pas assez naturelle . . .’
In fact his classification is entirely natural.

The ‘A’ definition is sometimes called the ‘P’ definition, after Poisson, who
used it, in effect, for the summation of Fourier series. It also can be traced
through Euler back to Leibniz. The justification for the ‘A’, which is usual with
English writers, lies in Abel’s theorem on the continuity of power series, which
establishes the ‘regularity’ (§ 1.4) of the method, and will be proved, as a special
case of a much more general theorem, in Ch. IV.

The € method embodies, in modern language, Euler’s famous principle ‘summa
cujusque seriei est valor expressionis illius finitae, ex cujus evolutione illa series
oritur’. We shall have more to say about this in §§ 1.6-7: for the moment we
observe only that Euler was obviously thinking in terms of power series, and that
no mathematician of his period could possibly have expressed himself on such a
subject without very serious ambiguity.

Finally the ‘(E, 1)’ method is derived from ‘Euler’s transformation’, which was
primarily a weapon for transforming slowly eonvergent into rapidly convergent
series, but which he applied to divergent series also.

Tt is plain that all these methods satisfy our axiomatic requirements
(A) and (B), and it is easy to verify that the first three also satisfy (C),
provided that the € method is associated with a definite region of
continuation. We denote the partial sums of ay+a,+a,+... and
a;+astag+... by s, and t,, so that ¢, = s,.;—a,; and write

' filx) = a;tax4-az2® 4.,

so that zf,(x) = f(x)—a,.
j‘ Theorem 41,
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(1) If ag+a,+a,+... is summable (C, 1) to s, then

ottt _ n+2(80—|—31+...+s,,+1_
n41 n+t1 n+2
so that a,+a,+... is summable (C, 1) to s—a,,
(2) If ag+a,+ ... is summable (A) to s, then
fi(@) = Y f(x)—ae} > s—ay,
and a,-}+a,+... is summable (A) to s—a,.

(3) If f(x) is one-valued and regular in a region including 0 and 1,
and f(1) = s, then f)(x) is also one-valued and regular in the region,
and f(1) = s—a,.

Thus the direct statement in (O) is true of each of the three methods,
and the arguments are plainly reversible. It is less obvious that the
(E, 1) method satisfies (C), and we postpone the proof to § 8.3. If we
take this for granted for the moment, then it becomes plain that all
four methods, if they sum (1.1.1), must give the sum }. It is easy to
verify this directly, since s, is 1 for even and 0 for odd =, so that
So+81+...+s, is }(n+2) or }(n+1); since f(x) = (14-)~1; and since
by = 1and b, = 0 forn > 0.

We shall see later (or the reader may verify as an exercise) that all
four methods also yield the equations (1.2.2)-(1.2.7), and that the last
three yield all of (1.2.8)—(1.2.17). The (C, 1) method fails with (1.2.17),
since the values of s, are 1, —1, 2, —2, 3,... and $y+s8;+...+8, is
3(n+-2) for even and 0 for odd ». It will be observed that in this case
a repetition of the averaging process would give the limit .

Methods (1), (2), and (4) give co as the sum of (1.1.5): in the last case
by =1, b, = 2, b, = 4,..., so that the series (1.3.5) is 3-+4+3%4....
Method (3) is inapplicable, since f(x) = (1—x)~*is not regular at = 1.

Methods (1) and (2) fail for (1.1.3): the values of s, are 1, —1, 3, —35,
11,...; and ¥ @, 2™ is not convergent when x > 4. Method (3) gives the
sum %. In method (4), b, = (1—2)" = (—1)", and so

3bo+1b,+3bs+ ... = =i+ =%
so that this method also gives }. This is plainly the ‘right’ sum, since
it satisfies s = 1—2s.

It is also instructive to consider (1.1.6). Here method (1) gives co.
Method (2) is inapplicable for the same reason as in the last paragraph.
Method (3) gives (1—2.1)-! = —1. Finally, with method (4), we have
b, = (142)» = 37,

$bo+3b,+3bgt . = B3+ EE)

ao) —> 8—ay,
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which diverges to co, so that the method gives oo. It will be observed
that in this case there are two suggested ‘sums’, viz. 0 and —1, and
that the second has an air of paradox, since it does not seem natural
to attribute a negative sum to a series of positive terms.

1.4. Regularity of a method. It is easy to state in general terms
some of the qualities required for a useful method of summation of
divergent series. It should be simple, as, for example, the first two
methods of §1.3 are simple; and it should be reasonably general, in the
sense of being applicable to a good variety of important series. There
is another requirement which can be stated more exactly, that of
consistency or regularity.

A method will be said to be regular if it sums every convergent series
to its ordinary sum. Thus the (C,1) and A methods are regular, since
> a, = s implies both

S — So+81+...-Fs, N
" n4-1

and f(x) = 3 a, 2" —> s, the first by a well-known theorem of Cauchy,
the second by Abel’s theorem on power series.

These methods are regular in an extended sense. If a, is real and
8, >0 (for example, if ¥ a, is a divergent series of positive terms),
then §, - 0o, and the (C, 1) method gives s = c0. For the A method
there are two possibilities. Either ¥ a,, 2" diverges for some z = x, < 1,
in which case it necessarily diverges to co in the interval (z,, 1), and
f(x) = oo in such an interval; or ¥ a,z" converges for 0 < x < 1, in
which case f(x) >co when z — 1. In either case we can say that the
A method gives s = co. When a regular method has this additional
property, we shall say that it is totally regular. We shall see (§§ 3.6 and
4.6) that the (E, 1) method is also totally regular. It is obvious that the
€ method is not totally regular, since it sums 14+2-+4+4+48+... to —1.
In fact it is not even regular, since f(z) need not be regular at x = 1
when Y a, converges.

S

1.5. Divergent integrals and generalized limits of functions of
a continuous variable. It is natural to give similar definitions apply-
ing to functions of a continuous variable x. Suppose that a(t) is
integrable in every finite interval (0, z), that

s@) = f a(t) di,



1.5] INTRODUCTION 11

and that we have given some ‘Pickwickian’ definition of the limit s of
8(x) when z — 00, or, what is the same thing, of
f a(x) dx.
(1}
Then we shall say that a(x) is P integrable in (0,00), that s(x) has the
P limit s, that s(z) > s (P), and that
J.a(x) dz = s (P).
0
Thus the definitions corresponding to the first three of §1.3 are as
follows.
(1) If :

(1.5.1) %f s(t) di - s
J :
or, what is the same thing, if

% f (x—t)a(t) dt — s,
0

we shall say that

0

(1.5.2) f a(z)dz = s (C,1).
@) I ’
(1.5.3) faw) = f e~ (z) d

0
is convergent for w > 0, and f(w) - s when w - -0, we shall say that

(1.5.4) f a(x) dz = s (A).
0
(3) If there is a function Jf(w) of the complex variable w, defined by
(1.5.3) for large positive w, and one-valued and regular in an open and
connected region containing the origin and the distant part of the -
positive real axis; and if f(0) = s; then we shall say that
(1.5.5) f a(@) de = s (€).1
0
We can modify all these definitions, if we please, by a change in the
lower limit. There is no useful analogue of the (E, 1) definition.

1 The definition does not correspond exactly to the ‘E’ definition of § 1.3, since f(w)
will not usually be regular at infinity.
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Thus if a(z) = e™®, where m > 0, we have

1—emiz 4

s(z) = %(l—e"""), %‘f s8(t) dt = 7%-]—
0

mix . om
so that
(1.5.6) f emiT dp = —| f cosmzx dx = 0, [sinmx de = —
m J m
0 0 0
all (C,1); and f e—W-mi)x g — 1 ad i,
w—mir  m

0
so that the A and € methods give the.same results. Also
8(x) = tm~Y(1—em™=) > im~ (P),
so that
(1.5.7) emiz . (), cos mx — 0, sinmx — 0 (P),

where P may be (C,1), A, or & We have thus defined various senses
in which ‘cosco = 0 and sinco = 0’.

It will be observed that

1 { cos? 1  sin2mx 1
- . tdt = =
xf sin2™ % 5+ gma 2’
0
so that cos?mx — %, sin®mx — 3 (C, 1);

and it is casy to show that the A and € methods give the same limits. It isnot
to be expected that the P limit of the square of a function should usually be the
square of its P limit.

We add some examples of formal calculations with integrals analogous
to those of §1.2. All the integrations are over (0,00). Differentiation
of (1.5.6) with respect to m gives

(1.5.8) J. x%? cosmx dx = 0, f P ginme dx = 0,
. 2p)!
(1.5.9) f 22 sinmax do = (—1)? 75_121;’.1_1,
1
fxzpﬂ cosmx dx = (—1)P+1 (—22%1)—
me2p+2

If H(x) = apta, 22 +-a 2.,
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and we integrate term by term, then we obtain
(1.5.10) J. é(x)cosmx dx = aof cosmz dx +a, f a2cosmx dx ... =

QG 4! aa

(1.5.11) fg&(x)sinmx de = aofsinmx de +... =

As is to be expected, these formulae are sometimes correct a,nd some-
times not. Thus if ¢(z) = Jy(z) they are
1 11 1

f J@)osmade =0, [ Jye)sinme dz = — 45— 4. = =T

and they are correct when m > 1. But they are false when m < 1,
and (1.5.10) is obviously false when ¢(z) = e=='.

1.6. Some historical remarks. In the next chapter we shall give
substantial examples of the use of divergent series by Euler and other
early analysts. It will be convenient to lead up to them by a few more
miscellaneous remarks.

(1) The earliest analysts were, on the whole, rather severely ‘ortho-
dox’: their work had the arithmetical spirit of that of the Greeks. What
is lacking in the work of Cavalieri, Wallis, Brouncker, Gregory (who
first used the word ‘convergent’), and Mercator is not rigour but
technique. In particular they were handicapped by the lack of service-
able criteria for convergence. Newton was the first analyst who was
the master of a really powerful technique: he regarded infinite series
primarily as a tool for quadratures, and there was so much for him to
do in this field that the rewards of orthodoxy were sufficient. He was
no doubt aware that many of his formulae could be interpreted in
different senses, for example, that

(1.6.1) fE:; ay+a,z-tay 2% +...

where f and g are polynomials, could be interpreted either in the
arithmetical sense which demands convergence or in the algebraical
sense in which it means that

(1.6.2) f(x)—(ag+a,x4...4a, x")g(x)
is divisible by z»+! for every value of =.

(2) Thus there is little about divergent series before Euler except in
certain passages in the correspondence of Leibniz and the Bernoullis;
and the impression which these leave is that Leibniz missed a great
opportunity. He was on the track of at least one of the standard
definitions, but gave way to the temptation of seasoning the discussion
with metaphysics. The sum of 1—1+41—... is to be } on grounds of
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‘probability’: ‘porro hoc argumentandi genus, etsi Metaphysicum magis
quam Mathematicum videatur, tamen firmum est: et alioqui Canonum
Verae Metaphysicae major est usus in Mathesi, in Analysi, in ipsa
Geometria, quam vulgo putatur.’” Such language from so great a
mathematician invited confusion in weaker minds;} and Leibniz’s ‘lex
continuitatis’, ‘unde fit, ut in continuis extremum exclusivum tractari
possit ut inclusivum’—the principle, so often appealed to by the British
mathematicians of the early nineteenth century, that ‘what is true up
to the limit is true at the limit’—was still more unfortunate. It was
nearly 100 years later when Lagrange (referring to an observation of
Callet which we shall quote in a moment) remarked that ‘les géométres
doivent savoir gré au cit. Callet d’avoir appelé leur attention sur
Pespéce de paradoxe que présentent les séries dont il s’agit, et d’avoir
cherché & les prémunir contre I’application des raisonnements méta-
physiques aux questions qui, n’étant que de pure analyse, ne peuvent
étre décidées que par les premiers principes et les régles fondamentales
du calcul’.

Callet’s remark refers to Euler’s principle ‘summa cujusque seriei . ..’,
which we quoted in § 1.3, and which was the subject of a correspondence
between Euler and N. Bernoulli in 1743. Bernoulli had objected that
the same series might ‘arise’ from two different ‘expressions’ which
yielded different values, and Euler had committed himself to the
assertion that this could not happen. Writing to Goldbach in 1745, he
says ‘Dariiber hat er zwar kein Exempel gegeben, ich glaube aber gewiss
zu sein, dass nimmer eben dieselbe series aus der Evolution zweier
wirklich verschiedenen expressionum finitorum entstehen koénne’.
Callet, forty or fifty years later, observed that 1—14-1—... arises, when
we put £ = 1, not only from (1+z)-! = 1—z+2%*—..., but also from

14z+...42m1  1—gm
(1.6.3) liwi...j{'_-x“-l = T 1—amtar—arnfan—,
for any m < n, and that Euler’s principle might thus be made to give
any sum m/n for 1—141—....

The explanation is fairly obvious (and was given by Lagrange him-
self). The series (1.6.3), considered as a power series, has gaps: thus
whenm = 2, n = 3, it is

14+0.2—1.2%+1.2340.24—1.25+...;
Euler’s principle does not assign the sum § to 1—141—... but to
140—14+140—1+4...; and there is no a priori reason for expecting

+ Even Euler appealed to metaphysics when he could think of nothing better—* per
rationes metaphysicas . . . quibus in analysi acquiescere queamus’.
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the two series to have the same sum. And, in fact, Euler’s assertion,
when properly interpreted, is correct, since a convergent power series
has a unique generating function.

It is a mistake to think of Euler as a ‘loose’ mathematician, though
his language may sometimes seem loose to modern ears; and even his
language sometimes suggests a point of view far in advance of the
general ideas of his time. Thus, in the very passage in which he
formulates his principle, he refers to the series (1.1.4). The principle,
as we formulated it in § 1.3, does not apply to this series, since
1—1!z-+2!22—31234... is not convergent for any z but 0. Even so,
says Euler, ‘ich glaube, dass jede series einen bestimmten Wert haben
miisse. Um aber allen Schwierigkeiten, welche dagegen gemacht
worden, zu begegnen, so sollte dieser Wert nicht mit dem Namen der
Summe belegt werden, weil man mit diesem Wort gemeiniglich einen
solchen Begriff zu verkniipfen pflegt, als wenn die Summe durch eine
wirkliche Summierung herausgebracht wiirde: welche Idee bei den
seriebus divergentibus nicht stattfindet. . . . This is language which
might almost have been used by Cesaro or Borel. And in another place,
referring more generally to the controversies excited by the use of
divergent series, he suggests that they are largely verbal: ‘quemad-
modum autem iste dissensus realis videatur, tamen neutra pars ab
altera ullius erroris argui potest, quoties in analysi hujusmodi serierum
usus occurrit: quod gravi argumento esse debet, neutram partem in
errore versari, sed totum dissidium in solis verbis esse positum.” Here,
as elsewhere, Euler was substantially right. The puzzles of the time
about divergent series arose mostly, not from any particular mystery
in divergent series as such, but from disinclination to give formal
definitions and from the inadequacy of the current theory of functions.
It is impossible to state Euler’s principle accurately without clear ideas
about functions of a complex variable and analytic continuation.

(3) It is essential to remember that Euler was thinking of power
series; as soon as we admit other kinds of development, all sorts of
difficulties appear. Thus "

(1—22x)1 = 142244224 8x3+...
gives 14+244484... = —1;
and (1.2.1) gives (the complex) oo as the sum of 14+1+414-.... But

2 2 4 8
ezy__1=ezy+1+e4y+l+e3y+l+'" (y>O)T

1 2

1 This is a corollary of a% = ;i-_l-l_xfl'
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gives 14+2-+4+4+4+84... =
for y = 0, and
{(s) = 1724-2-343+... (s>1)
gives 14+1414... = {(0) = —3%
for s = 0. On the other hand,
x4 (222 —1x) 4 (323 —22%) 4 (42t —3a3)4-... = O
and x4 (3822 —x)+ (T2t —32%)+ (1608 —Tat)+-... = 0
for 0 < x < 1, and these give
‘ 1+14+14... =0, 1+2+4+4+... =0
forz = 1.
There are also difficulties, even for power series, with many-valued
functions. It is natural to say that
F—4+§—.. = log(1+2) = log3,
since log 3 is the value of log(1+x) when 2 moves to 2 in the obvious
way. But we might also argue that
344§+ = log(1—2)* = log(—1) = (2k~+1)ms,
and here mi and —mi seem equally natural values (though either has
an air of paradox).
The following example might have puzzled Euler. The series

1( 2x )*‘ 1.3( 2x )4
(1.6.4) olira) Toa\ty=) T+
is convergent for small and also for large #, but to different sums, viz.
(1+2%)/(1—2?),  (@*+1)/(x*—1)
respectively. If x = 2i we obtain
116 1.3(16)’ s

=35 tz.alp) = **
Which sign shall we choose ?

(4) It is interesting in this connexion to look at a transformation of the
geometric series which is due to Goldbach and which may be regarded as an
eighteenth-century essay in ‘analytic continuation’. We have simplified and
generalized Goldbach’s actual analysis.

The idea is to transform 1—z-+22—..., by formal multiplication by a series of

the type 14+ A, — A+ A;—Ay+.. = 1,

into a series of negative powers of y = ax-+b. We write 4, = o, y™" and arrange
the product as

1 — a? —a? .
Yyt —aqylemzyt oy itogaty? —oyrtyl—ay 2yt .
oy y~? —a Y t—cgryt oy itoap iyt

oy y? —oagy i —ogay®
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If now we take a, = (b—a)*(a—y), then it will be foundt that C,, the sum of
the nth column, is a(b—a)*y~", and we obtain

1—z4a2—a3+... = ay~1+a(b—a)y 2+a(b—a)y—2+..,

which is the expansion required. The first series is convergent for [z| < 1, the
second for |az+b| > |b—al. If, for example, b > a > 0, then the second region
includes the first. Since both series are convergent, and the transformation valid,
for |x| < 1, the second series gives the continuation of the first.

(5) Mathematics after Euler moved slowly but steadily towards the
orthodoxy ultimately imposed on it by Cauchy, Abel, and their suc-
cessors, and divergent series were gradually banished from analysis, to
reappear only in quite modern times. They had always had their
opponents, such as d’Alembert,{ Laplace,§ and (in his later days)
Lagrange: after Cauchy, the opposition seemed definitely to have won.

The analysts who used divergent series most, after Euler, were Fourier
and Poisson (who was almost Cauchy’s contemporary). We shall see
specimens of their work in Chs. II and XIII. The most impor-
tant for us here is Poisson, since he so nearly formulated definition
(2) of §1.3. Poisson, in effect, defines the sum of the trigonometrical

series 3a,+ > (a, cosnf+b, sinnb)
as the limit when » — 1 of the associated power series
tay+ > (a, cosnf-+-b, sin nf)r™.

Thus, speaking of the series (1.1.9), he says ‘cette série n’est ni con-
vergente ni divergente|| et ce n’est qu’en la considérant ainsi que nous
le faisons comme la limite d’une série convergente, qu’elle peut avoir
une valeur déterminée. . . . Nous admettrons avec Euler que les sommes
de ces séries considérées en elles-méme n’ont pas de valeurs déterminées;
mais nous ajouterons que chacune d’elles a une valeur unique et qu’on
peut les employer dans ’analyse, lorsqu’on les regarde comme les limites
des séries convergentes, c¢’est & dire quand on suppose implicitement
leurs termes successifs multipliés par les puissances d’une fraction infini-
ment peu différente de 1’unité.” This is practically the ‘A’ definition,
but we must not exaggerate the clarity of Poisson’s views. His ideas

+ By induction from O, = —2Cp_y—an 1y " 4o,y ".
1 “Pour moi j’avoue que tous les raisonnements et les calculs fondés sur des séries qui
ne sont pas convergentes . . . me paraitront toujours trés suspects, méme quand les

résultats de ces raisonnements s’accorderaient avec des vérités connues d’ailleurs.’
§ ‘Je mets encore au rang des illusions P'application que Leibniz et Dan. Bernoulli
ont faite du calcul des probabilités . . . (o the summation of such series as 1 —1+1—...).’
|| He means, of course, ‘properly divergent’ to c0 or —co.
4780 C
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about repeated limits are often by no means clear: thus he writes
Fourier’s theorem as

flz) = % f"f () dt +117 f {i cos n(t—x)}f (@) dt,
o AR

when, of course, he means

1

-21; J?f(t) dt+ % i f" cos n(t—x)f(t) dt.

-

1.7. A note on the British analysts of the early nineteenth century.
We end this chapter with a few remarks about British work on these subjects
during the years 1840-50, which has been analysed very carefully by Burkhardt
in the article from which we have quoted. It was a long time before the writings
of the great continental analysts were understood in England, and these British
writings show a singular and often entertaining mixture of occasional shrewd-
ness and fundamental incompetence.

(1) The dominant school was that of the Cambridge ‘symbolists’, Woodhouse,
Peacock, D. F. Gregory, and others. They represented what may be described
as the ‘f(D)’ school of analysis. They started from ‘algebra’, and had something
of the spirit, though nothing of the accuracy, of the modern abstract algebraists.
They dealt in ‘general symbols’, on which operations were to be performed in
accordance with certain laws: ‘the symbols are unlimited, both in value and in
representation; the operations upon them, whatever they may be, are possible
in all cases; . . .> But the foundations of their symbolism were both inelastic
and inaccurate. They insisted on a parallelism between ‘arithmetical’ and ‘ general’
algebra so rigid that, if it could be maintained, it would effectively destroy the
generality; and they never seem to have realized fully that a formula true with
one interpretation of its symbols is quite likely to be false with another. They
were also very much at the mercy of catchwords like ‘what is true up to the
limit . . .’, and it is not surprising that their permanent contribution to analysis
should have been negligible.

Occasionally, however, they arrived at formulae which are still worth examining.
Thus Gregory’s formulae

(1.7.1) iqﬁ(x-{-n) =0, (1.7.2) 20(—1)"¢(m+n) =0,
(1.7.3) > S Gt —pe—n) = $1@)
1

are true, or true with modifications, when interpreted properly, for interesting
classes of functions.

(2) There is one volume of the Transactions of the Cambridge Philosophical
Society (vol. 8, published in 1849 and covering the period 1844-9) which contains
a very singular mixture of analytical papers and gives a particularly good picture
of the British analysis of the time. It contains Stokes’s famous paper ‘On the
critical values of the sums of periodic series’, in which ‘uniform convergence’
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appears first in print; papers by S. Earnshaw and J. R. Young which are little
more than nonsense; and a long and interesting paper by de Morgan on divergent
series, a remarkable mixture of acuteness and confusion.

De Morgan, as Burkhardt recognizes, was no ‘blosser Algorithmiker’ like
Peacock. He was a prolific and ingenious writer, both on logic and on mathe-
matics; he invented the ‘logarithmic scale’ of convergence criteria; and his
Differential and integral calculus, which is the best of the early English text-books
on the calculus, contains much that is still interesting to read and difficult to find
in any other book. In this paper he attempts a reasoned statement of his attitude
to divergent series, ‘the only subject yet remaining, of an elementary character,
on which serious schism exists among mathematicians as to absolute correctness
or incorrectness of results’. He talks much excellent sense, but the habits of the
time are too strong for him: logician though he is, he cannot, or will not, give
definitions.

‘The moderns’, he says, ‘seem to me to have made a similar confusion in regard
to their rejection of divergent series; meaning sometimes that they cannot safely
be used under existing ideas as to their meaning and origin, sometimes that the
mere idea of anyone applying them at all, under any circumstances, is an absurdity.
We must admit that many series are such as we cannot safely use, except as means
of discovery, the results of which are to be subsequently verified. . . . But to say
that what we cannot use no others ever can . . . seems to me a departure from all
rules of prudence. . . .” Would analysis ever have developed as it has done if
Euler and others had refused to use /(—1)?

He refuses to distinguish between different types of divergent series: if some
are to be used, all must be. ‘I do not argue with those who reject everything
that is not within the province of arithmetic, but only with those who abandon
the use of infinitely divergent series and yet appear to employ finitely divergent
series with confidence. Such appears to be the practice, both at home and
abroad. They seem perfectly reconciled to 1—1+41—... = }, but cannot admit
14244+.. = —1." It is very odd that it should never have occurred to him
that there might be interpretations (for example, Poisson’s) which apply in the
one case and not in the other.

Later, when he recurs to this point, he is a little inconsistent. There are cases
in which 14244+ ... seems to represent — 1, others in which it seems to repre-
sent c0:1 thus the limit of

142442t +...+ 202 4 ...,

as z—> 1, is o (a well-chosen example). This he can tolerate, but ‘let it come
out anything but —1 or oo, and as a result of any process which does not involve
tntegration performed on a divergent series . . . and I shall then be obliged to admit
that divergent series must be abandoned’.f There is something in his view: —1is
a root of 2 = 1422, and there is a sense in which oo can be said to be one also,
while 0 or 1 certainly cannot. We found 0 in (3) of § 1.6, but de Morgan would
certainly have felt that the example was unfair, and would not have been
altogether wrong. It is true that —1 and oo are the only ‘natural’ sums.
Similarly with 1—1+41—...: it would be fatal if this came out to be anything

1 See § 1.6 (3).
1 The emphasis on integration is odd, but de Morgan seems to have regarded integra-
tion as an ‘essentially arithmetic’ process liable to destroy any more ‘symbolic’ reasoning.
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other than }. ‘The whole fabric of periodic series and integrals . . . would fall
instantly if it were shown to be possible that 1—1-1—... might be one quantity
as a limiting form of 4y—A;+A4,—... and another as a limiting form of
B,—B,+ B,—...’; and here there is some quite mistaken criticism of Poisson.
De Morgan implies that to define 3 a,, as lim ¥ a, 2" is to assume that ‘what is
true up to the limit is true at the limit’; whereas it is just this distinction which
is seized upon by, and embodied in, the definition.

He gives curious examples of paradoxes resulting from integration. Here and
elsewhere he shows a good deal of formal ingenuity, but other paradoxes
rest merely on confusion about many-valued functions. He forgets that the
integral of 21 is log|z|, not logx, when z is negative, and concludes that

on
I tanx der = 2me
0

and that ‘tan®z has —1 for its mean value’—a conclusion which he tries to
reinforce on other grounds. There is also some discussion of the formulae
(1.7.1)~(1.7.3), and of alternating asymptotic series of the Euler-Maclaurin type.
‘When an alternating series is convergent, and a certain number of its terms are
taken . . . the first term neglected is a superior limit to the error of approxima-
tion. . . . This very useful property was observed to belong to large classes of
alternating series, when finitely or even infinitely divergent: I do not remember
that anyone has denied that it is universally true. . . . De Morgan shows by
examples that it is not, but without making any substantial contribution to the
subject. Indeed these supplementary discussions merely confirm the impression
left by the earlier sections of the paper, of astonishment that so acute a reasoner
should be able to say so much that is interesting and yet to miss the essential
points so completely.

(3) It is only fair to quote a few instances of British analysts who got nearer
to actuality. F. W. Newman protested against the dogma ‘what is true . . .’ and
pointed out that, in the case of the trigonometrical series

cosz—3}cos 3x+Ecosbr—...,

it is plainly false. His analysis is unsatisfactory, but he makes his point sub-
stantially, and his paper is interesting because it led Wilbraham, a little later,
to the discovery of what is now called the ‘Gibbs phenomenon’. Stokes, in his
famous paper mentioned already, remarked that ‘of course we may employ a
divergent series merely as an abbreviated way of expressing the limit of the sum
of a convergent series’, and observed that it did not seem possible ‘to invent a
series so rapidly divergent that it shall not be possible to find a convergent series
which shall have, for the limits of its first » terms, the first n terms of the divergent
series’.} Finally, Homersham Cox, referring to the ‘equivalence’ of the symbolists,
used language entirely modern in spirit: ‘it is said that the symbol “ =" here
designates symbolical equivalence. The truth of this assertion depends on the
definition of this phrase, and without doubt many arbitrary definitions might be
given, in accordance with which the binomial theorem might be considered to
hold for divergent series.’

1 Of course this is not true without reservation.
1 Consider Z ¢(n)xd™, where ¢(n) — oo rapidly.
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NOTES ON CHAPTER I

§ 1.1. Many writers, particularly in England, have used ‘divergent’ in narrower
genses. Thus Bromwich, Hardy, and Hobson, in their text-books, call 3 a,, diver-
gent only when s, — o or 8, — — 0, describing other non-convergent series as

‘oscillatory’. In his first edition Hobson had called ¥ a, divergent if |s,| ~> co:
thus 1—243—... was divergent.

The narrower use of ‘divergent’ has its advantages in elementary tea,chmg, but
the wider use is almost necessary here. The ‘theory of divergent series’ is essen-
tially a theory of oscillatory series, theorems about series which diverge ‘properly’
to o or —oo being usually of the same type as those about convergent series.
See, for example, § 3.6, and the remarks in Hobson, 2, 4.

Cauchy’s Analyse algébrigue (Paris, 1821) was the first standard treatise on
analysis written in a genuinely modern spirit. A good deal of his work on the
foundations is to be found, sometimes even in a sharper form, in a series of memoirs
published by Bolzano in Prag in 1817. See Stolz, M4, 18 (1881), 255-79.

§ 1.2. For justification of the results in (1)-(3), (5), and (6) see Appendix I.
As regards (4), if

a

flz) = I cosxt x(t) dt,
°

where 0 < a < 1, x(t) is any integrable function, and —m < 8 < =, then

> -yl =J{Z(—l)"“coi—?ot}x(t)dt [ (- xwae
1 0 1

0

which is {72f(0)+16%f(0), in agreement with (1.2.24). Many other formulae of
the same kind may be proved similarly. The limitations a < 1 and |0] < = are
essential.

For the Bernoullian and Eulerian numbers, and the Bernoullian functions, see
Bromwich, 297 et seq., 370, and Chapter XIII.

The series (1.2.18) seems to have first been summed by integration by Euler,
Novi Commentarii Acad. Petropolitanae, 5 (1760), 203. [Opera (I), 14, 542-84.
He gives another method in Opera (I), 15, 435-97.]

§ 1.3. More detailed information about the early work of Bernoulli and others
on divergent series will be found in Reiff, Geschichte der unendlichen Reihen
(Tiibingen, 1889), in a paper by Burkhardt in MA4, 70 (1911), 169-206, and in
Burkhardt’s article ‘Trigonometrische Reihen und Integrale’ in the Enzykl. d.
Math. Wiss. (11a12). Reiff’s book is useful but uninspiring and not always
accurate. Burkhardt’s writings are much more interesting, and contain a mass
of curious information difficult to find elsewhere. The historical discussions here
and in §§ 1.6-7 are based mainly on these sources.

Hutton, Tracts on math. and philosophical subjects (London, 1812), gave what
is in effect the following definition of the limit of a divergent sequence (s,). Define
s® fork = 1, 2,... by

8(") %s(k—l)+%8(k—1) (n > 0),

with s® =0 (k>0), ss¥=3s, (n>0)
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Thus s{) and s are
380, 380+ 351, 381 +4800e0s B8n g+ E8psees
150 $so+1s1, 180+ 301+ 1800s 380t 380 1 +15psee
Then 8, —>'s (Hu,k) means s® s,
It is easily verified that
1-1+41—... = } (Hu, 1), 1-24+3—... = } (Hu,2);
and we can show, from the general theorems of Ch. III, or those about Nérlund
means in Ch. IV, that any series summable (Hu, k) is summable, to the same
sum, by the corresponding Cesaro mean.

For examples of the use of Euler’s transformation in numerical computation
see Bromwich, 62-6.

§ 1.4. For Cauchy’s theorem see Hardy, 167, or Bromwich, 414. It is a case
of Theorem 44. Abel’s theorem is included, for example, in Theorems 27 and 55.

§ 1.5. For (1.5.10) and (1.5.11) see Appendix I, § 4, where some ecrrors in a
paper in TCPS, 21 (1908), 1-48, are rectified.

§ 1.6. The first criterion for convergence formulated explicitly seems to have
been Leibniz’s familiar criterion for the convergence of an alternating series
a,—a,;+a,— ... with positive decreasing a,,.

(3) The series (1.6.4) converges in two regions bounded by the circles
u?+(v4-1)? = 2, where u+-¢v = z, the lune inside both and the infinite region
outside both; and diverges in the two remaining lunes. The point 2¢ is in the
upper of these last two lunes. The series represents a single two-valued function of
z = 2x/(1+2?), but two different one-valued functions of x.

(4) For Goldbach’s actual statement of the transformation see M. Cantor,
Vorlesungen diber Geschichte der Math., 3, ed. 2 (Leipzig, 1901), 641. The account
in Reiff, 89, is incorrect.

§1.7(1). A reader acquainted with the elements of the theory of Fourier series
will easily verify the truth of (1.7.1)-(1.7.3) for ¢(x) defined by appropriate trigo-
nometrical integrals.

(2) Burkhardt analyses the papers of Earnshaw and Young with more care
than they deserve. He also says a good deal about minor German work of the
same period, but this is on the whole less interesting.

(3) The papers of Newman, Wilbraham, and Homersham Cox appeared in the
Cambridge and Dublin Math. Journal, 3 (1848), 108 and 198, and 7 (1852), 98.
F. W. Newman, Professor of Mathematics in University College, London, was a
brother of Cardinal J. H. Newman.
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SOME HISTORICAL EXAMPLES

2.1. Introduction. In this chapter we give the examples of the
work of Euler and others which were promised in § 1.6, starting in each
_case from a passage in the original writings of the analyst in question.
The subject-matter of these passages is still important, so that they
have more than an historical interest; and we shall therefore analyse
them in some detail, and add the explanations needed to show their
connexion with more modern work.

A. Euler and the functional equation of Riemann’s zeta-function

2.2. The functional equations for {(s), 7n(s), and L(s). The
Riemann {-function {(s), defined by the series

(2.2.1) {(s) = 1-54-2-54-35...

when s = o+itand ¢ > 1, is a one-valued analytic function of s, regular
all over the plane except for a simple pole at s = 1. It satisfies the
functional equation

(2.2.2) L{(1—s) = 2(2m)~2cos ysm I'(s){(s).
Near s = 1,
(2.2.3) Ue) = iyt

where y is Euler’s constant.

The functions 7(s) and L(s), defined for ¢ > 0 by
(2.2.4) 7n(s) = 18—2-543-5—..., (2.2.5) L(s)=1-*—3-45°—..,
are integral functions of s; 7(s) = (1—21-%){(s), but L(s) is an inde-
pendent transcendent. They satisfy
(2.2.6) (25 1—1)p(1—s) = —(25—1)m~*cos is7 I'(s)7(s),

(2.2.7) L(1—s) = 2573sin {smw I'(s) L(s).

These results have usually been attributed to Riemann, Malmstén,
and Schlomilch. It was comparatively recently that it was observed,
first by Cahen and then by Landau, that both (2.2.6), which is equiva-
lent to (2.2.2), and (2.2.7) stand in a paper of Euler’s written in 1749,
over 100 years before Riemann. Euler does not consider complex values
of s, and does not profess to have proved the equations even for real s.
He states them, and verifies them in such a number of cases as ‘ne plus
laisser aucun doute sur la vérité de notre conjecture’. Incidentally his
verifications throw much light on his views about divergent series.



24 SOME HISTORICAL EXAMPLES [Chap. II
2.3. Euler’s verification. Euler states (2.2.6) in the form

=214 8-l (s—1))(2—1)

1—2-843-5—... (2 1—1)n*

and proceeds to verify this equation (a) for all integral s and (b) for

s = }and s = §. It will be observed that s = } is the only one of these

values of s for which both series are convergent.
He needs the formulae

(2.3.1)

cos 3sm,

(2.3.2) 1—g-sp3w_ . - 21 up
3. = .
(2.3.3) 1—141—... =} (A),
(2.3.4) 1— 9% 3% — 0 (A),
(2.3.5) 1 Q-1 gkl — (Rl ;113,, (A).

Here k is a positive integer. Of these formulae (2.3.2) is familiar, and
the others, apart from the (A), are (1.2.7), (1.2.12), and (1.2.13).

It is important to observe that, here at any rate, Euler is quite
explicit about his use of divergent series: the series are to be summed
by the A definition of §1.3(2). It is easy to verify their truth in this
sense. For from

(2.3.6) eV—eWhe W = (V+}1)1 (y>0)

it follows that "

(2.37)  Ime-v—gme-w{ 3me-w_ . — (—1ym{ Z)"_1
dy| ev+1

form =0, 1, 2,.... Now

Bk ka—l

Sy = i—itanhdy = §— Z( 1)'“

so that the limit of (2.3.7) is

}m=0), 0 m=2k>0), (—1F221B m—2—1>0).
It follows that the series (2.3.6) and (2.3.7) have the limits required
when y > O0orx = e ¥ — 1.

This proves (2.3.3)-(2.3.5), and also shows that the series are sum-
mable (€) to the same sum: Euler might equally well have used this
definition. We can naturally prove the truth of (1.2.8)-(1.2.11),
(1.2.14), and (1.2.16), in the same senses, in the same way.
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From (2.3.4) n(1—8) =0 (s=38,5,7,..);
and from (2.3.2) and (2.3.5)

7(1—8) — (_1)*‘_1(8_1)!(28_1) (s = 2,4,6,..).
n(s) (221 —1)m*
If we observe that cos }s= is 0 when s is odd and (—1)¥ when s is even,
then these two formulae verify (2.3.1) for s = 2, 3, 4, 5,....
Secondly, if we take s = 1, and interpret cos $sm/(2°-1—1), for s = 1,
as its limit when s — 1, i.e. as —/(2log 2), then (2.3.1) becomes
1—141—.. 1
1—3+3—... 2log?2’
in agreement with (2.3.3).
Thirdly, if we write (s—1)!(2°—1) = s!(2°—1)/s, and interpret this
as 1.log 2 for s = 0, then (2.3.1), for s = 0, becomes

1343 9log2,
1—1+4+1—...
again in agreement with (2.3.3).
Fourthly, replacing (s—1)! by I'(s), and using
o
2I'(1—s) cos $(1—s)7’
we find that the truth of (2.3.1) for general s > 1 implies its truth for
s < 0. We may then regard the formula as verified for all integral s.
Fifthly, if s = }, and we interpret (—3%)! as I'(}), then

_(s—1l—1) R ) G VI
(21— 1)7* @ —T)Vmv2

go that (2.3.1) is true for s = . This completes Euler’s programme
except for the value s = §. For this he has only a numerical verifica-
tion. He sums the divergent series with the help of the Euler-Maclaurin
sum formula, and finds the value -380129.... This gives -496774 for
the value of the left-hand side of (2.3.1), in agreement with the right to
5 figures. ‘Notre conjecture est portée au plus haut degré de certitude,
qu’il ne reste plus méme aucun doute sur les cas ot I’on met pour
P’exposant s des fractions.’

I'(s) cos s =

cos }sm =

As Landau remarks, Euler’s computation of 1—+2-4-43—... may easily be
transformed into a rigorous determination of its Abel sum. It is worth observing
that the sum may also be calculated by Euler’s transformation of § 1.3(4). In
this case @, = (—1)"/(n+1) and, calculating the successive differences of \/(n-1),
we find

bo=1, by = —-4142, b, = —-0964, b, = —-0465, b, = —-0285, b; = —-0197,
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so that Euler’s series is
1 -4142 -0964 -0465 -0285 -0197

2”4 8 16 ~ 32~ 64 .
which is 380 to 3 figures. Our calculation is of course much rougher than Euler’s.

Euler does not discuss (2.2.7) in the same detail, but implies that
he has made similar verifications. He ends by remarking that ‘cette
derniére conjecture renferme une expression plus simple que la pré-
cédente; donc, puisqu’elle est également certaine, il y a & espérer qu’on
travaillera avec plus de succés & en chercher une démonstration par-
faite, qui ne manquera pas de répandre beaucoup de lumiére sur
quantité d’autres recherches de cette nature’.

B. Euler and the series 1 —1!x+42122—...
2.4. Summation of the series. The series
(2.4.1) J&) = 1—1lz-+2122 31234,
which reduces to (1.1.4) for = 1, is not convergent for any z except
z = 0, or summable by any of the methods of §1.3. For example, when
x = 1, the series (1.3.5) diverges almost as rapidly as the original series.
Euler, however, succeeded in summing the series as follows. If we
suppose x positive and write, formally,
dx) = zf(x) = x— 112421 23—,
then term-by-term differentiation gives
(2.4.2) 2% (x)+d(x) = 22(1!1—21x+ 3122 —. ) tx—1la?|... = 2.
This differential equation has the integrating factor x—2-1=, and
B .
PETR
0
is a solution which vanishes with x.}
If we make the substitution ¢ = z/(1-+zw), we obtain

=

(2.4.4) Fl) = ‘é_(}) — f 1:-_:w dw;

0

and it is natural to attribute this sum to the series (2.4.1), the more so
because we come back to the series by expanding (1+4zw)-! in powers
of xw and integrating formally term by term.

1 It is easily verified by partial integration that ¢(z) = O(z) for small z.
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Since z > 0, we have also, from (2.4.3),

x )
-1t 1 e | I
loe | 0 g — 2ete | € du = —-elzli(e-V=
(2.4.5) f(x) = e”J‘ ; dt xexfudu ¢ li(e—1=),
0 1/x
where liv, the ‘logarithm-integral’ of v, is defined for 0 <v < 1 by
v @
logt U
0 log(1/v)
Then
| 7 ] r —-u ; 1 —u ud H 1 -u
—1i(e—u)=f.e_du—f5_du—f " du—f_“+f —° du
% o u u %
y 1 ) i 0
— oy _y v
and it follows from (2.4.5) that
= __1 1z 1 l
(2.4.6) flx) = g Ing+S(x ,
where
2.4.7) S(y) = —yev v _ ¥
(2.4 Y ye'ly— y+2—5—3——3—, )

is an integral function of y. These equations give the analytic continua-
tion of f(z) all over the plane. It is a many-valued function with an
infinity of branches differing by integral multiples of 2miz-1¢¥*, and has
one branch which tends to 1 when # — 0 through positive values.

If we take x = 1, we obtain the equation

(2.4.8) 1—114-21—31+4.. = —e(y—l +2—12—,-—ﬁ+...).

2.5. The asymptotic nature of the series. If z = rei, where
—m < 0 < 7, then
(2.5.1) f(x) = f - dw = fe-“’{l—xw+x2w2—...+(—l)"x"w"} dw-+

1+ 2w
0 0

. e—wypn+l
— 1) +lpn+l
(1 [ 200
0
say. Now [14aw|= ,/(142rwcosf-+r*w?) has the minimum 1 if
cosf > 0, and the minimum |sin @] if cosf < 0. Hence |R,(x)| does
notexceed (n-+1)!72+1if |0] << 3w, or (n+-1)1r*+|cosec | if in < 6 < =,

dw = 1—1z+2x?—... 4 (—1)"n! 2"+ R, (),
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and is O(r+!) uniformly in the angle —n-}68 < 0 < #—3, for any
positive 8. In particular

(2.5.2) fx) = 1—1lz4 22— .. .4 (—1)"n! 2"+ O(x"+1)
for small positive « and given =.

A series ay+a, x+ayx%4-...
is said to be an asymptotic series for f(x), near x = 0, if
(2.5.3) f(x) = agta,x4...4a, 27+ O )

for each n and small z. We are interested here primarily in positive z,
but the definition applies to complex z also; thus (2.4.1) is an asymp-
totic series for our f(z) in any angle —n+48 < 0 < n—39, i.e. in any
angle issuing from the origin and omitting the negative real axis. There
is therefore one sense at any rate in which the series ‘represents’ f(x).

The definition of an asymptotic series is interesting only when the series is
divergent. If f(x) is regular at the origin, then its Taylor’s series Y a,z" is
convergent for small z and satisfies (2.5.3); but in this case there is no novelty
in the idea. Divergent asymptotic series occur in the works of most of the older
analysts, but the first mathematicians to make a systematic study of them were
Poincaré and Stieltjes, and the first general theory is contained in a famous
memoir of Poincaré on differential equations.

There will usually be an infinity of different functions represented asymptoti-
cally by the same series ¥ a,2" Thus if g(x) = e~%%, where a is positive, then
x~"1g(zx)— O for every n, uniformly in any angle —3}n+8 < 6 < }v—38 (and in
particular for positive z); so that, for example, the series (2.4.1) gives an asymp-
totic representation of each of the functions f(z)+ Cg(x). To say that a series is
an asymptotic series for f(x) is not to ‘define its sum’ in the sense of § 1.3. There
are ‘uniqueness theorems’ for asymptotic series, due to Watson, F. Nevanlinna,
and Carleman; but these depend upon the knowledge of exact bounds for the
error terms such as the R, (x) of (2.5.1), valid for all n and all £ of an appro-
priate region.

We shall often use the phrase ‘asymptotic series’ in a slightly extended sense,
saying that Y a,z"t* is an asymptotic series for f(z) if 3 a,z" is an asymptotic
series for #—*f(x), and we shall sometimes express this by writing

(2.5.4) fl@) ~ 3 aznte,

2.6. Numerical computations. Euler calculated a numerical
value for the sum of (1.1.4) in various ways. First, we may use (2.4.8).
Secondly, we may use (2.4.5), calculating the integral, for x = 1, by
numerical quadrature. These methods give

(2.6.1) §=1—11+21—31+... = -5963....

There is a more remarkable, though less precise calculation (also due
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to Euler) in Lacroix’s treatise. Lacroix writes 8 for 1—s = 1!—2!4...,
and transforms § as in § 1.3(4), obtaining

S =i—t+i—H+8-0+..
a series which diverges a little less rapidly than the original series. He
then writes § = $—1+8’, and a repetition of the transformation on
S’ gives
, 3 5 21 99 615
T mtE mtom
Finally, he writes S’ = 3.2-4—5.2-64-8", and a third transformation
on 8" gives
gr— 21 156 159 439 A 5241
29 212 915 918 921
Eight terms of this series lead to the values ‘4008 and -5992 for S and
8, correct to two figures. It seems at first very remarkable that we
should get so good a result, since all of the series used are divergent
(and in the end nearly as rapidly as s). We shall see later (p. 196) why
the method should be so successful.

C. Fourier and Fourier’s theorem

2.7. Fourier’s theorem. By ‘Fourier’s theorem’ we mean here the
theorem that, if f(x) belongs to an appropriate class of functions, and
is ‘representable’ by a trigonometrical series

(2.7.1) ia,+ i (@, cosnx+-b, sin nx),
1

in the sense that the series converges to f(x) in the open interval (—=, ),
then

(2.7.2) @, = % ff(x)cosnx dzx, b, = % ff(x)sinnx dzx.

Thus the theorem asserts that, if a trigonometrical series converges to
f(z) for —m < x < =, then it is necessarily the ‘Fourier series’ of f(z).

The formulae (2.7.2) are older than Fourier. Thus Burkhardt, in his
article in the Enzyklopidie, traces the formula for a, back to Clairaut
(1757). They were familiar to Euler, who gave the ordinary deduction
of them, by term-by-term integration, in 1777.

It is to be observed that ‘Fourier’s theorem’, as we have stated it,
is a ‘uniqueness’ theorem, and is true or false according to the class of
functions considered and the sense of ‘representation’. Thus it is true,
after du Bois-Reymond and de la Vallée-Poussin, when f(z) is finite
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and integrable and representation implies ordinary convergence. If we
assume only that the series is summable by one of the standard methods
of the theory of divergent series, then the theorem may be false, even
when f(x) is always 0. Thus

sin z+2sin 2243 sin 3z ...

is summable (A) to 0 for all z, but is obviously not the Fourier series
of 0. In any case the theorem is a sophisticated one, which it would
have been quite impossible for Fourier to prove strictly: the simplest
case of it, in which f(z) is 0 and representation implies convergence,
was first proved by Cantor in 1870.

There is a remarkable passage in Fourier’s Théorie de la chaleur in
which he attempts to prove a special case of the theorem. Let us
suppose that f(z) is an odd analytic function regular for |x| < =, so that

_ it FeEAD(0)
(2.7.3) f@) = Z mxzku
for |z| < 7; and that
(2.7.4) flx) = i b, sin nx
1

for —m < & < m, the series being convergent in the classical sense.}
These are in effect Fourier’s assumptions; and his object is to prove
that b, is given by the second formula (2.7.2).

2.8. Fourier’s first formula for the coefficients. The ‘natural’
method for the proof of (2.7.2) is that of term-by-term integration,
which had already been followed by Euler, and would have led Fourier
at once to a proof satisfactory according to the canons of the time.
Fourier, who does not seem to have known Euler’s work, follows a quite
different and very surprising course (though he refers to the proof by
integration later). He replaces every sine in (2.7.4) by its Taylor’s
series, and equates the coefficients of powers of  to those in (2.7.3).
He thus obtains an infinite system of linear equations

(2.8.1) b 22+1b, 32+1p, . = (—1)pf@R+D(0) (b = 0,1,2,...)

in an infinity of unknowns. It will be observed that all these series
are divergent even in the simplest cases: thus f(x) = z has the Fourier
series

(2.8.2) 2(sinz—} sin 224 sin 3x—...),

+ Its sum for x = —mor = is naturally not f(x) but {f(—m)+f(m)} = 0.
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and in this case they reduce to
I—141—.. =4,  1-2%43%_  —0 (h=12..).

We know that these equations are actually true with appropriate
definitions, for example, the A definition. But the fact that they are
divergent, and that (as we saw in §2.7) a slight intrusion of divergent
series will make ‘Fourier’s theorem’ false, will give an idea of the diffi-
culties in Fourier’s way. Judged by modern standards, he was setting
himself a hopeless task.

None the less, Fourier’s argument is more than an historical curiosity
and is still well worth study. Considerable sections of it are correct,
or easily restatable so as to become so; it contains ideas important for
other purposes; and there are by-products which may still suggest
interesting problems.

Let us write (2.8.1) as

(2.8.3) by+2%-1p, 4 321 1 — A, (h=1,2,.).

Then Fourier’s leading idea is to suppress all but the first 7 equations
and all but the first » unknowns, thus obtaining a finite system

(2.8.4) élnéh—lbn =4, (h=1,2..7),

to calculate the corresponding values b, of the b,, and to investigate
the limit of b,, when r —>oco. This is now the dominant idea in the
theory of the solution of an infinite system of linear equations, and it
is in Fourier’s work that it appears first.

Fourier, however, does not do exactly this. He varies the 4, as well
as the b,, replacing (2.8.4) by

(2.8.5) nz;nzh—lbn,, —4,, (h=12..7).

We call this the system (r). Fourier’s idea is that we can, by an
appropriate choice of the 4,,, secure both that 4,, - 4, and that
the b, tend to limits b,,.

He tries to showt that if we choose the 4, so that

A
(2.8.6) Ay, = A, 22é2’
yZ| A
(2.8.7) Ay = Ayp— 32'3: Agg = Agg- 32"3,

T This part of Fourier’s argument is restated in a more accurate form by Darboux in
a footnote to p. 191 of the reprint of Fourier’s works.
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and generally

A
(2.8.8) Ay = Ay — TR (b= 1,20,
then we shall have
1

(2.8.9) by = bl,2(l'—§—2)’

2.8.10 bry = byg(1— 2 Byy = byg(l1— 2
( Laad ) 1,2 — Y13 '_?: 2,2 — Y28 —ﬁ’
and generally

n?
(2.8.11) by = bn’,ﬂ{l—m} (n=1,2,..,7).
It will follow that, if the A, , satisfy (2.8.8), then b,,, - b,, where
(2.8.12 p 1™ Vi b
S12 { (et 1.)2}{ B (n+2>2} T T

when r >o0. We have then to calculate b, ;, by ,,... in terms of the 4,
(which are ex hypothesi the limits of the 4,,,).

Now by, = A,,, by the first of (2.8.5). We express this first in terms
of A4, A,,, by (2.8.8), next in terms of 4,3, Ags, Ay, by (2.8.7), and
so on. We find that

A 1 1 A
Ao = Aoy G2 = Ayt )+ 58

1.1 1 1 1 1 A

= A1,4—A2,4(§.,+§+4—2)+A3,4(§q§+42—22+-2‘2—3‘§)—'2-5347’";2 = sy
and in the limit
(2.8.13) by =4y, = A1P1,1_‘A2P2,1+A3I§,1—‘---’
where
(2.8.14) Py=1 Py=3m? Py=73mim?..,
and the summations are extended over unequal values of m,, m,,...
other than 1. This and (2.8.12) give b, in terms of the 4,.

We can calculate by, byg,..., and 8o by, by,..., similarly. We express
by, in terms of 4,,, 4,, from the system (2), then in terms of A;,,
A,y Agy from (2.8.7), and so on. Thus we obtain by; and we may
obtain b, similarly by starting from the system (n). The results may
be written

1 1
(2.8.15) 61(1—2—2)(1—3—2)... — A, Py APyt A Pyy— ..,

2
28.16) b, [ (1 _71;_2) — A, Py —Ay Pyt Ay Pyy— e

m#n
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where

(2817) PB,=1 P,=3m?  PB,=2mm?..

and the summations are now extended over unequal m,, m,,... other
than n. These equations may be simplified because

B

z—n
m#En

Thus (2.8.16) becomes
(2.8.18) (=1)»nb, = 4, Pl,n—A2I)2,n+A3 'Bi,n—
It is easy to find P, , for all & and n. If we write

el 2
||(1_i2) ST _ p Pt BA—
m

k11
1

then B, ., = =?/(2h4-1)!, and the identity
z2
(1 —E)(Br&nzzm,n #—..) = B—B*+ B~

gives the B, , in terms of the P,. Finally, making these calculations
and substituting in (2.8.18), we obtain

(2.8.19) (—1)*-fnb, = A1+($—§)A2+(£z_i ’f+1‘)A3+....

n? 3! " 5!
This completes the first and most complex stage of Fourier’s argument.
Thusif f(x) =2, 4, = 1,4, = A; = ... = 0, we obtain }nb, = (—1)»1
and '

x = 2(sinz—3}sin 2244 sin 3x—...).

2.9. Other forms of the coefficients and the series. If we
remember that 4, = (—1)*-1f#-1(0), so that

d " 3
fm) = ndy —Z Ayt f7(m) = —ﬂA2+’3L!A3—...,
and rearrange (2.8.19) in powers of n~2, we find that
(2.9.1) b= (—1p1 2 {f( ) — 75;’)+f (m) _ }

Substituting this series for b, in Y b, sinn, and rearranging the result-
ing double series by associating together the terms in f(x), f"(n),..., we
obtain

< . sin 2z  sin 3z
(2.9.2) %‘ﬂf(x) = Z (—-l)hf(zh)(ﬂ)(smx—m-i-%mi‘—“,).
h=o
Each of these formulae is interesting in .itself, and valid under fairly

wide conditions.
4780 D
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We shall have more to say about (2.9.2) in Ch. XIII. Here we are
concerned with Fourier’s further transformations of (2.9.1). He observes
that ” "

x(@) = f(@&)—n=%f"(@)+nf " (x)—
satisfies the differential equation

n=2y"(@)+x(x) = f(z),

whose general solution is

0
Since f is odd, x is odd and C' = x(0) = 0. Hence, putting = =, and
using (2.9.1), we obtain

by = (=11 2y = 2 J fe)sinnt dt,
[}

x(x) = C cosnx+ D sin nx+n sin nx j f(t)cos nt dt —n cosnx f J@)sinnt dt.
(1}

which is the second formula (2.7.2). Thus at last Fourier has arrived
at the ordinary formula for the coefficients.

2.10. The validity of Fourier’s formulae. It would no doubt be
possible to determine conditions on f(x) sufficient to justify all Fourier’s
elaborate transformations, but a very careful analysis of his argu-
ment would be required. Here we shall consider two questions only:
() whether (2.9.1) is in fact a correct formula for b,, and (b) whether
the b, actually satisfy (2.8.1). The second question naturally pre-
supposes some definition of the sums of the divergent series involved.

(1) First, if f(x) is odd and regular along the stretch —r <L mof
the real axis, we have, since f(0) = f"(0) =

b, = f f@)sinnz dz = (— 1>"-1{f"” ! ”‘"’+ +

4 (—1)2f@h)(7r) +( 1)» f J @+ (x)cos nx dx},

n2h+1 n2h+l

by repeated partial integration. Since the la,st term in the bracket
is O(n—2%-2) for large n, we see that the series (2.9.1) is an asymptotic
series for b,,.

Next, if |f@®W(m)| < CK2* (h=0,1,..)
for some C and K, then the series is convergent for n > K. In particular
this will be true if f(z) is an integral function of order 1 and finite type,

1 This is, of course, a more general hypothesis than Fourier’s: he assumes that the
Taylor’s series of f(z) is convergent for |z| < =.
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i.e. if |f(x)| < De= for some D and L. If L <1, in which case also
K < 1, then the series is convergent for n > 1. In these circumstances
(2.9.1) is true in the ordinary sense.

We can also prove that the series is summable, under wider condi-
tions, in various senses, but this demands some knowledge of the
definitions of the sum of a divergent series associated with the name
of Borel.

(2) We shall now prove that the equations (2.8.1) are correct if the
divergent series which they contain are summed by the A method of
§1.3(2). We again suppose only that f(x) is odd and regular on the stretch
—a < x < 7 of the real axis.

Since f(x) is regular for —7 < # < =, we have

b, = .;_t f Fa)en= de = % f fl@)en= da,
-7 C

where C, is a curve from —u to = a little above the real axis. Hence

1 : 1 -3
Sbtn= L [f0) 3 ereoindo = [ fory Ty da,
Cy C1

for any positive 8. Differentiating 2h-1 times with respect to 3, and
then replacing the derivative under the integral sign by the correspond-
ing derivative with respect to x, we obtain

¢iz-3

ohal 5 (_l)h—l d 2h+1
> ntlp, e~on = — f(x) o = dx.
C1

When 8 — 0, the right-hand side tends to
(_1)h—1 J‘ i 2h+l  giz . (—-l)h f d \2h+1
&) L e = f(x)(d—x) cot o da.
Cl c’l

T 21

Since f(x) is odd, this is half the same integral round C, a complete
circuit round the origin in the negative direction; and this, by partial
integration, is

(-1
2

J @)} cot ha dx = (—1)kf@+1(0),
(0]

which is accordingly the A sum of Y n?*+1b,. Actually the series are
summable by ¢ Cesaro’ methods, 3 n2*+1b, being summable (C, 2k+1);+
but the A method is the simplest which will sum all of them.

t See § 5.4.
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D. Heaviside’s exponential series

2.11. Heaviside on divergent series. Our last example is one of
a different kind, since it comes from quite modern times and from the
work of a man who was not a professional mathematician.

Heaviside, in the second volume of his Electromagnetic theory
(London, 1899), has a long chapter on divergent series. He is plainly
not aware that, at the time when this volume was published, a scientific
theory of divergent series already existed;} and his work is always
unsystematic and often obscure. He does not attempt to develop any-
thing which can be called a ‘theory’ of divergent series, his attitude
towards them being, at bottom, that of Euler 150 years before: indeed
Euler had the clearer ideas. But Heaviside, whatever his merits as a
mathematician, was a man of much talent and originality, and what he
says (if often irritating to a mathematician) is always interesting.

It may be advisable to substantiate these assertions by quotations from
Heaviside’s writings.

‘I must say a few words on the subject of generalized differentiation and
divergent series. . . . It is not easy to get up any enthusiasm after it has been
artificially cooled by the wet blankets of rigorists. . . . I have been informed that
I have been the means of stimulating some interest in the subject. Perhaps not
in England to any extent worth speaking of, but certainly in Paris it is a fact
that a big prize has been offered lately on the subject of the part played by
divergent series in analysis. ... I hope the prize-winner will have something
substantial to say. . . .

‘In 0.P.M.} T have stated the growth of my views about divergent series up
to that time. . . . I have avoided defining the meaning of equivalence. The
definitions will make themselves in time. . . . My first notion of a series was that
to have a finite value it must be convergent. . . . A divergent series also, of
course, has an infinite value. Solutions of physical problems must always be in
finite terms or convergent series, otherwise nonsense is made. . . .

‘Then came a partial removal of ignorant blindness. In some physical problems
divergent series are actually used, notably by Stokes, referring to the divergent
formula for the oscillating function J,(x). He showed that the error was less than
the last term included. Now here the terms are alternately positive and negative.
This seems to give a clue. . . .

‘There are certainly three kinds of equivalence. . ..§ Equivalence does not mean
identity. . . . But the numerical meaning of divergent series still remains obscure.

1 Borel’s memoirs on divergent series were published during the years 1895-9, his
book in 1901. Poincaré’s theory of asymptotic series dated from 1886.

1 ‘On Operators in Physical Mathematics’: & series of three papers presented to the
Royal Society during 1892—4 but never printed in full.

§ Numerical, analytical, algebraical. Heaviside means, of course, that

. l4ztat4.. = (1—2)?
may mean (a) that 1+z+x%+... converges to (1—x)~1, (b) that it is a ‘representation’
of the function (1 —z)™1, (c) that it is the result of the algebraical process of ‘long division’
of 1 by 1—«. Euler would have said the same.
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. . . There will have to be a theory of divergent series, or say a larger theory of
functions than the present, including convergent and divergent series in one
harmonious whole. . . .” (Electromagnetic theory, 2, 434-50.)

The ‘rigorists’ whom Heaviside disliked so much had provided what he asked
for, even at the time when he wrote.

2.12. The generalized exponential series. There is one particular
series which Heaviside uses freely, and which he seems to have been
the first to use, though it is a special case of one stated many years
before by Riemann. This is the series

© s
(2.12.1) 8 = S(z,c) = r;_w o 1)
where z > 0, ¢ is real, and the coefficient is to be taken as 0 if ¢ is an
integer » and 7 > n: in this case § reduces to the ordinary exponential
series. Otherwise § is divergent for all x; but, since it reproduces itself
when differentiated formally, it is natural to suppose that it should
have the sum eZ, in some sense, for all c.

We suppose that ¢ is non-integral, R integral, and R > ¢. Then it
is easily verified by partial integration, or by differentiation of the
result, that

ae—R+n

—R— —e—T
R)Ie-‘tc tdt = 1—e 2, Te—RFnT1)

I'(c—

Hence
R

B er ge-Rin
Spl,0) = TZ I"(c-r+1) Z Te—B+ntl)

x
say. The sign of Qp is that of —F(c—-R), and

c—R
fo-R-1 ad

IT(e R)!f ~ [Te—B+1)|"

The signs of the terms in S with » > ¢ alternate in sign. If, for
example, up, the last term in Sy, is positive, then I'(c—R) < 0,
0 < Qr < ug, and €® < 8 < e*+uyp. If uy is negative, then

e tup < Sp < €.
Thus the series S represents e* asymptotically in a sense analogous to
that of § 2.5; its terms, from a certain point on, alternate in sign; and the

error involved in stopping at any term is of the same sign as, and
numerically less than, the last term retained.

[@rl <
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2.13. The series Y ¢®(x). Heaviside’s series is a special case of the

series
e

(2.13.1) 8 = S@) =Y ),

where ¢™(x), the rth generalized derivative of ¢(z), is defined for
r= —s < 0by

(2.13.2) $-9(x) = $,(x) =( d,)‘q;(t) = L[ @90 a,
‘of (s—1)! !

and for r = —s-+N as the Nth differential coefficient of ¢ (x). If ¢(x)
is & multiple of 2°, and ¢ > —1, then (2.13.1) reduces to (2.12.1).
It

(2.13.3) S = ( DED )¢(r)(x) = SWL 8@

r<0 rz=0
say, then
x

1 T
213.4) s0=_L_ [ @—tpig@ydi= | etp(nat
>0 (s—l)!! (‘!

for any integrable ¢.
Let us assume for simplicity that ¢(¢) is indefinitely differentiable
throughout any finite interval of positive ¢, and that

f e~1(t) dit

0
is convergent for r = 0, 1,..., in which case e~%¢®(t) > 0, when ¢ -> o0, for
r=20, 1,.... Then

[ e di— [ etgm(t)de = e 3 §(a),
r=0
xT T
by partial integration; and so

8P — 3 $o(e) = ex{ [ e e) dt— [ etgringy dt}.
r=0 T &
Combining this with (2.13.4), we find
I [2e] @
(2.13.5) Sy = i dN(x) = exfe*%(t) dt—e”fe“zﬁ(ﬂ'"m(t) dt.
r=— 1] x

If now |¢B+(x)| < xg.(2), and xgp.1(x) > 0, for every R, when z — co,
then (2.13.5) gives

el

Sg = €* f e~ip(t) dt+O{xp1(¥)} = A€+ O0{xg.1 (%)},
0
and in this sense S is an asymptotic series for de®.
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2.14. The generalized binomial series. Heaviside has also a
‘generalized binomial series’, viz.

n— S n—m-8 T(n+1)
(2.14.1) (142" = Z z I'(m—s+1)I'(n+s—m-+1)’

§=-—o
where m and n are not usually integral. This series, unlike the
exponential series, appears explicitly in Riemann’s earlier work.

If m and n are integral and n positive, then (2.14.1) reduces to the
elementary binomial theorem ; if m only is integral, to the ordinary
infinite series,

m I I'(n+1) _ ixn_, T'(n+41)
a___z_w F'm—s+1)P(nt+s—m-++1) “ Lr+1)'(n—r+1)’

which converges to z"(142-1)* = (1+2)" if || > 1. Generally the
series is infinite at both ends, and convergent at one end, divergent
at the other, according to the value of z.

If we separate the positive and negative values of s, and write the
two resulting series at length in the notation usual for hypergeometric
series, we obtain

Fm+1)I'(n—m--1)
I'n+1)

n—m 1

= F1,—m,n—m-4-1, —z)+ mﬁ'(l, —n4m-+t+1,m+2, -—5),
If, for example, 0 < 2 < 1, then the first series on the right is con-
vergent; the second is divergent, but summable in various ways, and
represents the analytic continuation of the function which it defines
when convergent. The formula may be proved directly or deduced
from known theorems concerning the relations between different hyper-
geometric functions.

(2.14.2)

xm—n(l +x)n

NOTES ON CHAPTER II

§ 2.2. Euler, ‘Remarques sur un beau rapport entre les séries des puissances
tant directes que réciproques’, Histoire de I’ Académie des Sciences et Belles-lettres
(Mémoires de I’Académie), 17 (Berlin, 1768), 83—-106 [Opera (I), 15, 70-91]. The
volume covers the year 1761, and the paper had been read in 1749.

Cahen, AEN (3), 11 (1894), 75-164 (75-6), seems to have been the first modern
writer to call attention to Euler’s paper. Landau, Bibliotheca Math. (3), 7 (1906),
69-79, gives a full account of it, with the appropriate references to other writers.
It seems that no one before Riemann (1859) gave a satisfactory proof of (2.2.2), but
that Schlémilch had stated (2.2.7) in 1849 and proved it in 1858. The standard
proofs of (2.2.2) are given in Landau, Handbuch, 281-98: see also Ingham, 41-8,
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Whittaker and Watson, 268-9. Many other proofs have been given by other
writers.

§ 2.3. For (2.3.2) see, e.g., Bromwich, 298.

§ 2.4. Euler’s discussions of the series (2.4.1) seem to have begun in his corre-
spondence with N. Bernoulli: see in particular Opera (I), 14, 585. Other references
will be found in Reiff’s book quoted in the note on § 1.3. The summability of the
series by various methods is discussed by Hardy, PCPSS, 37 (1941), 1-8: see § 8.11.

There is a systematic account of the theory of lie=® in Nielsen, Theorie des
Integral-logarithmus und verwandter Transzendenten (Leipzig, 1906).

§ 2.5. Poincaré’s memoir was published in AM, 8 (1886), 295-344. There are
accounts of the theory of asymptotic series in Borel, ch. 1; Bromwich, ch. 12;
Knopp, ch. 14; and Ford, Studies.

For the theorems of Watson and Carleman see Watson, PT RS(A), 211 (1912),
279-313; Carleman, Les fonctions quasi-analytiques (Paris, 1926); and § 8.11.

§ 2.6. Lacroix, Traité du calcul, 3, ed. 2 (Paris, 1819), 346-8; Bromwich, 336.

§ 2.7. There are short accounts of the relevant parts of the theory of Fourier
series in Hardy and Rogosinski and in other books there referred to, and a very
full one in Zygmund.

The fullest account of the early history of the formulae (2.7.2) is that in
Burkhardt’s Enzyklopddie article quoted under § 1.3.

§ 2.8. Fourier, Théorie analytique de la chaleur, ed. 2 (Paris, 1822), 187 et seq.
(reprinted in vol. 1 of his uvres). There are short accounts of Fourier’s analysis
in F. Riesz, Les systémes d’équations linéaires & une infinité d’inconnues (Paris,
1913), ch. 1, and Hardy, Annrals, 36 (1935), 167-81; but both are condensed, and
neither author quite does justice to Fourier.

Dr. Bosanquet observes (1) that it is at any rate doubtful whether it is always
possible, under Fourier’s conditions, to choose A4, , so as to satisfy (2.8.8) and
Ay, — Ay; (2) that we can deduce directly from (2.8.5) that

o] T (=38) = ([ T (1)) e = B o2

B=1
m=1 m=1
where the dash implies the omission of the value m = n, EA; , = Ap,,,, and
P =1, PO =3Immzt.m% (h>1),
the summation extending over unequal m,;, Mm,,... from 1 to r other than n. If
we then make r — 0, and suppose that 4, — A4, we obtain (2.8.16) without
using the special relations (2.8.6)—(2.8.12).

§2.10(2). The argument here may be generalized: see Hardy, l.c. under § 2.8,
172. Very general theorems concerning the Cesaro summability of derived series
of Fourier series, of which the series considered here are special examples, were
proved by W. H. Young, PLMS (2), 17 (1918), 195-236. Still more general
results, and full references, will be found in Zygmund, 257 et seq, and in Bosan-
quet, PLMS (2), 46 (1940), 270-89.

§ 2.12. Heaviside’s exponential series, and the generalized binomial series of
§ 2.14, are both special cases of a generalized form of Taylor’s series which occurs
on p. 335 of Riemann’s posthumous fragment ‘Versuch einer allgemeinen Auf-
fassung der Integration und Differentiation’ (Werke, 331-44). Riemann’s expan-
sion 18

hmtr .
fo+h) = D oy ry P,



Notes] SOME HISTORICAL EXAMPLES 41

where r is fixed, and in general non-integral, m runs from —co to o, and D™+ is
a symbol of generalized differentiation. Riemann does not write down the
exponential series explicitly, and makes no attempt at a rigorous discussion. For
this see Hardy, JLMS, 20 (1945), 48-57.

The fragment is taken from a manuscript dated 14 Jan. 1847, when Riemann
was a student. As the editors (Dedekind and Weber) remark, it was never
intended for publication; but it contains the first definition of ‘Riemann-Liouville’
integrals, and no doubt marks the beginning of Riemann’s work on hyper-
geometric series.

The asymptotic character of the series (2.12.1) was proved by Barnes, TCPS,
20 (1908), 253-79. Barnes’s proof is valid for complex z with largz| < .

§ 2.13. Pélya has proved that if the series (2.13.1) is convergent for any x for
which ¢(z) is regular, then ¢() is an integral function, and the series is uniformly
convergent in any bounded region of z (so that its sum is necessarily a multiple
of e®). See Pélya and Szegé, 1, 133 and 314.

Hardy, l.c. under § 2.8, discusses the summability of (2.13.1) by methods
of Borel’s type.

§ 2.14. The binomial series occurs, as formula (3), on p. 336 of Riemann’s
fragment. He comments on its failure for negative integral n.

The formula (2.14.2) occurs, for example, in Barnes, PLMS (2), 6 (1908),
141-77 (146, formula I). It may be proved directly by integrating

f (—u)y ™ (1—u)r

round an appropriate contour.

du
14+au



III

GENERAL THEOREMS

3.1. Generalities concerning linear transformations. The
theory of divergent series is concerned with generalizations of the notion
of the limit of a sequence (s,,), which are usually effected by an auxiliary
sequence of linear means of s,. Thus in §1.3 we defined the (C, 1) limit
of (s,), or the (C,1) sum of ¥ a,, as the limit of

- So+8+...}F8,

m-41
when m —oo0; and the A limit of (s,), or the A sum of I a,, as the
limit of
(3.1.2) tx) =D a,a" = > a"(1—x)s,
when z — 1 through values less than 1. In each case the auxiliary
means are of the form

(3.1.1) ty

(3.1.3) tw =3 Cpnn (M =0,1,2,..)
or
(3.1.4) Hx) = 3 c,(x)s,,

where z is a continuous parameter.t Thus in (3.1.1)

Cmn = (m+1)71 0O<n<m), Cpn = 0 (0 >m),
and in (3.1.2) ¢, () = 2®(1—=z). In one case they depend on an integral
parameter m, in the other on a continuous parameter x; but, as we shall
see, this distinction is not very important. For the moment we consider

means of the type (3.1.3).
We call the system of equations (3.1.3), which we may write shortly as

(3.1.5) t = T(s),
8 linear transformation T; t,, the transform of s, by T; and the matrix
ITI = (cm,n)a )

in which c,, , is the element in the mth row and nth column, the matriz
of T.

1 Summations are over 0, 1, 2,... when there is no indication to the contrary. The
variable of summation will not be shown explicitly unless this is necessary to avoid
ambiguity: it is obvious, for example, that in (3.1.3) and (3.1.4) the summation must
be with respect to », so that, for example, Z c,, ,, 8, means

@

> Comnfne
n=0
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3.2. Regular transformations. The most important transforma-
tions are regular. We say that T is regular if

(3.2.1) tn,—>8 (m—o0)
whenever
(3.2.2) S, > 8 (n—>0o0).

We regard the first assertion as including that of the existence of ¢,
for every m, i.e. the convergence of all the series (3.1.3). Thus, after
Cauchy’s theorem quoted in § 1.4, the transformation (3.1.1) is regular.

There is an important theorem, due to Toeplitz and Schur, which
states necessary and sufficient conditions for the regularity of T. We
prove this theorem (Theorem 2) in §3.3: it is convenient to associate
it with two other theorems of a similar character concerning different
classes of transformations. We call the class of linear transformations
¥, the class of regular transformations ¥,. The class T, is the class
of transformations which transform all convergent sequences into con-
vergent sequences, i.e. transformations such that the convergence of s,
to s implies the convergence of t,, to some limit ¢. Thus ¥, is the subclass
of I, in which ¢ is necessarily the same as s. The class T¥ is the class of
transformations which convert all bounded sequences into convergent
sequences, i.e. transformations such that s, = O(1) implies ¢, 1. It
is plain that T* is also a subclass of I,; but IF and T, are, as we shall
see, mutually exclusive. We shall prove the following three theorems.

TaroREM 1. In order that T should belong to T, it is necessary and
sufficient (i) that

(3'2'3) Ym = z Icm,n] <H,
where H is independent of m; (ii) that
(3.2.4) ' Crn = Ons

for each n, when m — oo; (iii) that
(3.2.5) =3 Cun >
when m — 0. In these circumstances >, 8, is absolutely convergent, and
(3.2.8) >t =285+ 3 8,(s,—3) = 8(8— 3, 8,)+ 2 88,
when m —> o0, whenever s, — 8.
Here, of course, the limits §, and & are finite.

THEOREM 2. In order that T should belong to T, (i.e. that T should be
regular), it is necessary and sufficient that the conditions of Theorem 1
should be satisfied, that 8, = 0 for each n, and that & = 1.
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THEOREM 3. In order that T should belong to T¥, it s necessary and
sufficient that c,, ,, — 8, for each n, i.e. that the second condition of Theorem
1 should be satisfied, and that the series S [Cmn| should converge uniformly
in m. In these circumstances the first and third conditions of Theorem 1
are necessarily satisfied, > 8, = 8, and

tn—>t=238,s,
Jor all bounded sequences (s,,).

3.3. Proof of Theorems 1 and 2. (1) We prove first that the
conditions of Theorem 1 are sufficient. Since s, — s, 8, is bounded,
and it follows from (3.2.3) that all the series (3.1.3) are absolutely
convergent.

Next, the series (3.2.5) are absolutely convergent. Also, by (3.2.4),

N N
for every N, so that
(3.3.1) 2 18, < H.
Thus ¥ 8,, 38, s,, and the other series in (3.2.6) are absolutely con-
vergent.
Suppose first that s = 0. Then we can choose N = N(e) so that

(3.3.2) ls,] < ¢/4H (n> N).
Now v
tm_—z 8n Sp = 2 (cmn-sn)'gn = ; (cm,n_sn)sn",_Ngl(cm,n-87;)811. =U+V,
sy, Horo V<25 (mal+Ba) < b
N+1

by (3.2.3), (3.3.1), and (3.3.2); and U — 0 when N is fixed and m — co
by (3.2.4), so that |U| < e for m > M(e, N) = M(c). Hence
[t — zsn&nl <€
for m > M(e), and t,, > 3 8, s,. Thus the conditions (3.2.3) and (3.2.4),
without (3.2.5), are sufficient when s = 0.
In the general case we write
Sy = 8,—8, tm = 2 Copn S

Then s, — 0 and therefore

=3 8, 8.
Hence, now using (3.2.5),
b =2 Con(Sh+8) = ty+-30,, > 3 8, 5,485 = s(8— 3 8,)+ 3 8,5, = ¢.

Thus the conditions of the theorem are sufficient in any case.
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(2) Wehave now to prove the conditions necessary. We suppose that
T belongs to ¥,.

(a) Take s = 1, s, = 0 when n 5~ k, so that s, - 0. Thent, = ¢, 4,
and therefore c,, ; tends to a limit 8, when m —oco. Thus (3.2.4) is a
necessary condition.

(b) Take s, = 1 for all n, so that s, — 1. Then

by = z Cnn = Cm>
and therefore c,, tends to a limit 6. Thus (3.2.5) is necessary.
(¢) It remains to prove (3.2.3) necessary. This is the main point of
the theorem.
First, y,, is finite for every m. For if y,, = c0 we can choose (e,) so
that
€, >0, €, >0, D eplemnl = 0.1

If then we take s, = ¢, 8gnc,, ,, we have s, > 0 and

b = Z €nlCmn| = 0,
in contradiction to our hypotheses.

Thus v, is finite for every m, and we have to prove v, bounded.
If not then, given @, we can find an m such that y,, > G. We write

(3-3-3) Ymn =v§0 lcm,vla (3-3°4) dn =Vg° l8v|

We know already that y,,, - v, when n —co, and that c,, >3, (so
that y,, , - d,) when m — co.

Starting from an arbitrary n,, we construct two increasing sequences
my, My, Mg,... and n,, Ny, Ng,.... We suppose that m,, m,,..., m,_;, n,,
7g,..., N, have been determined already, and choose m, and n,,, as
follows. Since y,, > @ for any @ and some m, we can choose m, > m,_,
so that

(3.3.5) Ve = 2 Cmpn| > 20y, +1+2r+-2.
. n, . _

Since % [l —>§ 8, = d,,

when m - 00, we can suppose also that

ny
(3.3.6) Ymen, — % Icm,,nl < dn'+l’

n -
1 For example, we may, with Abel, take ¢, = ( > lcm_,,l) ', where Cm.n i8 the first
v=N
Cmy % 0.
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Since v,, ., = ¥m, When n - o, we can then choose 7,,; > n, so that

a

3.3.7 — = C 1.
( ) '}’m, 7m',n,+1 m_§+1| m,.,nl <

It then follows from (3.3.5)-(3.8.7) that

Ny 41
(3.3.8) S (emm| > rdy, 220,
+1

We now take
n = 0 (n < nl)’ Sy = rt 8gN Cpy, 0 (nr <n < nr+1)
forr =1,2,... Then |s,| << 1,5, 0, and
”r+1
]tm, = z lcmr,nl z lcm,,nl— z ]C ,n,
Ny i1+l
r—l('rd Ari2r)—(d, +-1)—1 =r.

Hence ¢,, > oo when m —co through the sequence (m,), and T is not
a transformation of ¥, The contradiction completes the proof of
Theorem 1.

The only point of the proof which presents difficulty is that of the necessity
of the condition (3.2.3). This may be elucidated as follows. Suppose that we
wished to prove (3.2.3) a necessary condition for the truth of the implication

|8a] < K—> |tw] < HK,
a theorem about uniform boundedness instead of about convergence. We should
take a fixed m and define s, by s, = Ksgnc,,,. Then

ty = K3 |emn| = Kym
and (3.2.3) follows. The proof of Theorem 1 depends (at the critical point) on
a combination of this device with the use of ‘rapidly increasing’ sequences. Such

proofs are common, for example, in the theory of the ‘convergence defects’ of
Fourier series.

It is now easy to prove Theorem 2. First, the conditions are
sufficient because they include those of Theorem 1, so that
by =1t =085+ 3 8,(s,—8) = s.
Secondly, the proof of their necessity is the same: the proof of (3.2.3),
indeed, is a little simplified because 8, = 0 and so d,, = 0.

3.4. Proof of Theorem 3. If the conditions of Theorem 3 are
satisfied, and s, is bounded, then 3 ¢, ., > €y, 8, are uniformly con-
vergent. Hence

lim¢, = lim 3 ¢, 8, = 2 (limc,,)s, = 3 8,3,
when m — o0, and the conditions are sufficient. In particular, taking

=1, §=1m3 cpp =238,
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The conditions (3.2.4) and (3.2.5), being necessary in Theorem 1,
are a fortiori necessary here. It remains to prove that

(3.4.1) Ym = 2 [Cmnl

(which is certainly bounded) must be uniformly convergent.

We show first that it is sufficient to prove this in the special case in
which 3, = 0 for every n. If T belongs to T¥ it belongs to I, so that
> 18,] < oo. The equations

t';n = Z (cm,n—sn)&n = 2 c;n,n Sp
define a transformation T’ for which c,, , - 0 when m — co. If T belongs
to I¥ and s, = O(1), then ¢,, > ¢ and

b —>1t— > 8,8,
so that T’ also belongs to T¥. Hence, if the conclusion has been estab-
lished in the special case, > ¢}y, | is uniformly convergent, and therefore
S lemnl = 2 |¢mn+8,| is uniformly convergent.
We observe next that the condition of uniform convergence may be
stated in a different form by use of (3.2.4). If (3.4.1) is uniformly con-
vergent then

(3'4'2) Ym = Z Icm,nl - z lsnl,

and the converse is also true, by a well-known theorem of Dini, because
|emn] = 0.1 Thus we may replace the condition of uniform convergence
by (3.4.2); and, in the special case which it is sufficient to consider, this
condition reduces to

(3.4.3) Ym = 2, [Cmm| > 0.

1 The substance of the theorem, at any rate, is Dini’s, but he stated it in a rather
different form (for uniform convergence over an interval of values of a continuous
variable). It may therefore be advisable to insert an explicit proof of what is actually
wanted here, viz. that if upy > 0, ugy — U, when m — ©, Tuy, and I U, are
convergent, and

gens Xupn—> X Uy

when m — 00, then X Uy, converges uniformly in m.
In fact

@ © [l © N
Zmn = (Euma—E U+ % Us—F (uma—Ua) = PHOHE,

@
say, 80 that 0 <N§1um.n < |P|+]QI+IRB].

We can choose N(e) so that |Q] < ¢; and, when N(e) is fixed, we can choose
M(e, N) = M(e) so that |P| < ¢ and |R| < ¢ for m > M(¢). Thus

©
(@) 0< 2 tmn < 3¢
N+1
form > M(e)and N = N(e), and therefore (since uy, 4 > 0)form > M(e), N > N(e). But

when M(e) is fixed we can choose N,(e) > N(e) so that (a) is also true for 0 < m < M(e)
and N > N,(¢), and therefore true for N > N,(¢) and all m.
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We have therefore to prove that (3.4.3) is a necessary condition for
a transformation T, with 8, = 0, to belong to T¥.

If (3.4.8) is false, there is a number y > 0, and a sequence (m®), such
that
(3.4.4) Ym = z Icm,nl Y

when m = m® and ¢ —>o00. We shall then define a bounded sequence
(s,) such that ¢,, does not tend to a limit when m — 0o through (m®).

We construet increasing sequences (m,) and (n,), the first a subse-
quence of (m®), as follows. Suppose that m,, m,,..., m,_;, and ny, n,,..., n,
have been determined. Since y,, - y and c,, ,, - 0 when m — 00, we can
choose an m, > m,_,, in (m®), so that

n,
(3.4.5) [Ym,—y| <277, (3.4.6) % [Cmpm| < 27T
Since Y |c,, .| I8 convergent, we can then choose n,.; > n, so that
(3.4.7) > lemal <277
Npt1+1

and it follows from (3.4.4)—(3.4.7) that

Ryt1

(3.4.8) S lemnl—y| < 3.2
n+1

We now define s, by
(349) 5,=0 (<n), 8= (=1rsgnom, (1 <1< 1)

forr =1, 2,.... Then [s,| < 1, and

(-]

2 CmunSn
Rpyy+1

<2,

n,
(3.4.10) | S e n 8| < 277,
0

by (3.4.6) and (3.4.7). Also

Ny 41 Ny 41
2 Conypn S = (_l)r 2; lcm,,nl
n,+1 n,+1

by (3.4.9); and so
i1

(3.4.11) > cm"nsn—(-—l)'fy
nT1
by (3.4.8). Finally, by (3.4.10) and (3.4.11),
[tm,—(—=1)y| <5.27;

< 3.2

and therefore ¢, does not tend to a limit. This completes the proof
of Theorem 3.
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3.5. Variants and analogues. There are many variants of the
theorems of § 3.2, which we shall not attempt to enumerate systema-
tically. We mention only a few which will be useful to us later.

(1) The first concerns sequences which tend to zero.

THEOREM 4. In order that s, — 0 should tmply t,, — 0, it is necessary
and sufficient that condition (3.2.3) of Theorem 1 should be satisfied and
that c,, , should tend to 0 for each n.

The sufficiency of the conditions follows from the argument of § 3.3 (1),
with 3, = 0 and s = 0. In this case the condition that c,, should tend
to a limit is not wanted. The argument of§ 3.3 (2), (a) and (c), also shows
that the two conditions retained are necessary, but that of (b) is
inapplicable.

(2) There are analogues in which m is replaced by a continuous
parameter x. Thus the analogue of Theorem 2 is

THEOREM 5. Suppose that x is a continuous parameter which tends to
infinity, and that

(3.5.1) Hx) = 3 c,(x)s,.

Then the conditions (i) that 3 |c,(x)| should be convergent for x = 0, and
(3.5.2) S lea(x)| < H, ‘

where H is independent of x, for x = x; (i) that

(3.5.3) c,(z) = 0,

when x — o0, for every n; and (iii) that

(3.5.4) > cu(x) > 1,

when x - 00; are necessary and sufficient that t(x) should be defined by
(3.5.1) for x == 0, and tend to s when x - 00, whenever s, — s.

In this case also we call the transformation T defined by #(x) regular.

The theorem may be proved by an argument like that of §3.3. But
it is a corollary of Theorem 2. For, first, the conditions ensure that
t(x) - s when z — o0 through any sequence (z,) tending to co, and so
generally. Secondly, if condition (i) is not satisfied, then either the
series > ¢,(z,,) diverges for some z,, > 0, or

when z - o0 through some sequence (z,,) tending to co. But then, by
Theorem 2, there are sequences. (s, ) for which s, tends to s and

t(xm) = Z Con Sn
4780 E
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is either not defined for some z,, or does not tend to s. This proves
the necessity of (3.5.2), and that of (3.5.3) and (3.5.4) is obvious.

There are obviously similar theorems in which z tends to a finite limit
a (or a+-0 or a—0). These are derivable by trivial transformations, and
we shall regard them as included in Theorem 5. There is also an
analogue of Theorem 4 with a continuous parameter x, which we do
not state explicitly.

(3) There are similar theorems concerning integral transformations

(3.5.5) tx) = f c(@, y)s(y) dy;t

but they are a little less symmetrical, since the kernel ¢(z, y) may behave
in a more complex way for finite # and y than a function of integral
variables. We therefore confine ourselves here to the statement of
sufficient conditions (which are all that we shall actually need), and
suppose s(y) bounded for all y.

TaEOREM 6. In order that

(3.5.6) 8(y) >s (y—>o0)
should imply

(3.5.7) Hx) >s (x—>o0)
Jor every bounded s(y), it is sufficient that
(3.5.8) [ le(zy) 1 dy < H,
where H is independent of z, that

v

(3.5.9) [ le(z,9)| dy >0
’ 0

when x — o, for every finite Y, and that

(3.5.10) j ez, y) dy > 1

when z — co.

The proof is like the sufficiency proof in §3.3. We suppose first that
8 = 0. Then

Y ©
z) = [ clz,y)sty) dy + [ clz,y)sty) dy = U+,
. 0 Y

1 Integrations are over (0, o) unless the contrary is indicated. The integral (3.5.5) is
defined, in general, as

Y
lim [ o(,y)ey) dys
Y—o g

but in Theorem 6 it is absolutely convergent.
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say. We can choose Y so that |s(y)| < ¢/2H fory > Y, when
V1< 5 [ el dy < de
g

and U — 0 when Y is fixed and « —o0. Hence #(x) > 0. We then pass
to the general case by replacing s(y) by s;(y) = s(y)—s.

The transformation (3.5.5) includes those considered before as special cases.
If s(y) = 8p, (2, y) = cu(z) for n < y < n+1, then ¢z) = 3 ¢,(x)sy, the trans-
formation of Theorem 5. If we then restrict = to integral values m, we obtain
that of Theorem 2.

The form of (3.5.9) is not quite parallel to that of (3.2.4) with 8, = 0. The
parallelism would be restored if we wrote the latter condition, as we might, in
the form .

n
> lemy] = 0.
v=0

(4) We may also frame theorems in terms of series instead of
sequences. There are two in particular which are familiar in elementary
analysis,T and concern transformations of the classes T, and T¥.

THEOREM 7. In order that Y x,a, should be convergent whenever Y a,
s convergent, it is necessary and sufficient that

(3.5.11) 2 1Axn] =2 [Xn—Xn41| <0

THEOREM 8. In order that 3 x,a, should be convergent whenever
8, = @yt+a,+...4+a, is bounded, it is necessary and sufficient that (3.5.11)
should be satisfied and that x,, should tend to zero.

If t,, is the partial sum of Y x, a,, then

m m—1
b = % Xn@p = % (Xn—Xn+1)8nF Xm Sm>

so that
Cnn = Bxn (0 < <m), Xm (0 =m), 0 (m>m),
and
- m-—1
(3.5.12) Ym = % [Axn] | xm)-

We have to show that, for this ¢, the conditions of Theorems 7 and 8
reduce to those of Theorems 1 and 3 respectively.

It is plain from (3.5.12) that (3.2.3) implies (3.5.11). Conversely, if
(3.5.11) is satisfied then 3 (x,—~x,4,) is convergent, so that x, tends to
alimit x. A fortior: it is bounded, and then (3.2.3) follows from (3.5.12).
Thus (3.5.11) is equivalent to (3.2.3).

t So far as the sufficiency of their conditions is concerned.
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Next, ¢,,,, = Ax, for m > =, so that c,,, > Ax, = 8, when m — co;
and

m—1
%f=§(m—munm=xw=&

Thus the conditions (3.2.4) and (3.2.5) are satisfied without further
restriction on y,. This proves Theorem 7.

The additional condition for Theorem 8 is, by Theorem 3, that 3 [, , |
should be uniformly convergent, and this, as we saw in § 3.4, is equivalent

to
2 ‘cm,'n,l —> z Isfnl'
But here this is mSIIAxnI+ [Xm| = f [Axnl,
0 0

ie. Y |Ax,| < oo together with y, - 0. This completes the proof of
Theorem 8.

We can naturally prove Theorems 7 and 8 directly without appealing
to the more difficult theorems from which we have deduced them here.

(5) We conclude this section with the observation that the classes
%, and TF, both subclasses of T, are mutually exclusive. If T belongs
to T¥ then 3 |c,,,|, and a fortiori Y c,,,, is uniformly convergent, so
that

>3, = > lime,, =lim 3 c,, = limc, = 8.

But this is impossible when T is regular, since then 3, = 0 for all n
and 6§ = 1.

3.6. Positive transformations. In this section we shall be con-
cerned exclusively with regular transformations. There is one parti-
cularly important subclass of such transformations, in which

(3.6.1) Cn = 0

for all m, n or at any rate for n > n,. We call such a transformation
a positive (regular) transformation.

If T is regular then c, , — 0, when m — co, for every =, so that the
Cmn With m < my do not affect the behaviour of ¢,, for large m. It is
therefore of little importance whether we suppose c,,, = 0 for all m
and #» or only for n > n,.

THEOREM 9. If T is regular and positive, and s, real, then

(3.6.2) lims, < limt, < lim¢, < lims,
s - o

n—o —>0 m—>o

for any (s,). In particular s, - s implies t,, — s for finite or infinite s.
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If lims, = o is finite, then s, > o—e for n > N = N(e). We may
suppose N = n,, and then, by (3.6.1), either ¢,, = oo or

N ) N 0
b, =D CrnSyt D CrnSy == D CrunSpt(G—€) D Cpn-
m % mn=n Ngl 'mn°n = ; mn - n Nz+1 mn

The first term on the right tends to 0 when m — co, and the second to
a—e, 80 that £,, > o—2e for sufficiently large m. Hence

- limt, > o = lims,.

The proof of the last inequality (3.6.2), when Iim s, is finite, is similar.

If lims, =00 (so that s,—>o00), then s, > @G for any G and
n > N = N(G) > n,; and either t,, = oo or £,, > 3G for sufficiently
large m, so that £, —>co. The case in which lims, = —oo is similar.

The last clause of Theorem 9 suggests a further interesting problem
concerning real transformations. We may say, as in §1.4, that a real
transformation T is totally regular if s, > s implies ¢,, > s for all finite
or infinite s. The conditions of Theorem 2 must then be satisfied, and
it is natural to ask for additional conditions necessary and sufficient
for total regularity. The general conditions are rather complex, and
we confine our attention to ‘triangular’ transformations

m

(3.6.3) by = g Conn Sn
in which ¢, ,, = 0 for n > m.

THEOREM 10. In order that a real transformation (3.6.3) should be
totally regular, it is necessary and sufficient that it should be regular and
positive.

After Theorem 9, we have only to prove that, if T is totally regular,
then c,,, = 0 for n > n,.

If the condition is not satisfied, there are negative c,, , with arbitrarily
large n and, since c,,, = 0 when » > m, also with arbitrarily large m.
There is therefore a sequence (m,) of m such that (1) ¢,,,,, < 0 for some
n, (2) if n,, is the rank of the last such c,,, ,, then n,,, < m,; and =, tends
to infinity with m,.

In what follows we consider only values of m in (m,), and write m
simply for m,. Starting with an arbitrary m,, we define sequences (m,)t
and (s,) as follows. Suppose that we have determined m,, m,,..., m,,
the corresponding values of =,, and those of s, for » < m,. Since

t (m,) is naturally & subsequence of what we first called (m;).



54 GENERAL THEOREMS [Chap. III

n,, < m, n, tends to infinity with m, and c,,, - 0 for each n when

m - o0, we can choose m,,; so that m,.; >n,, ., > m, and

3n| <1

My41,1

This defines (m,) by recurrence; and we then define s,,, for m, <n < m,,,,

by .
m;
=1 (M, <1 Mypyy, W F Ny ), 8, = [—c———rﬂv” (n = Ny, ,)-
Myt 1N, 4
Then s, — oo (since |c,,,, | < H), but

Mr+1

me
; mps1m Sn T 2 CmyyinSn

my+1
me+1

<1+4+m,y zﬂlcm,ﬂ,nl—mfn < 14+-Hmy, 1 —m7 ;.
my .

Hence t,, > —co when m = m, and r -0, and T is not totally regular.

The following examples may help the reader to appreciate the various
possibilities.

(i) The transformation in which ¢pm = 2, Cpmys = —1, and ¢y, = 0 other-
wise, is regular but not totally regular. Thus if s, = 2%, ¢, = 0 for all m.
If 8, = 3", then 8, — o0 but £, — —oo.

(ii) The transformation

b = 2 (30+31+ -+ 8mo1)— Z_}_i
which is of type (3.6.3), is regular but not totally regular; for if s, = n-1, then
8, — o0 but ¢, = 1 for all m.
(iii) 'The transformation defined by the matrix

1 —2-t 22 273
0 1 —22 273
0 0 1 =273
0 0 0 1

is totally regular. The conditions of Theorem 2 are satisfied, and
by = Sp—2""™ g+ 27 25y 0+ 2788 gt
If s, — 0, then there are two possibilities. If 3 2-"s, is divergent, then ¢, = o
for all m. If ¥ 2-%s, is convergent, then 2-™ s, ., = o(1)and ¢y, > 8,,—o(1) —> 0.
3.7. Knopp’s kernel theorem. There is an interesting generaliza-
tion of Theorem 9 for complex sequences, due to Knopp. We follow
Knopp in stating it for the general integral transformation (3.5.5).
We call the transformation positive if c(z,y) = 0 for all z, y.t The
conditions of Theorem 6 then reduce to

(@) o(@) = [ ofz,y) dy

+ The condition strictly parallel to that of § 3.6 would be ‘c(z,y) > 0 fory > Y’
We take ¥ = 0 to avoid minor complications.
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is bounded and tends to 1 when x — o0, and

b4
®) f c(x,y)dy —>0
(1}
when z - oo, for every finite ¥. We shall suppose throughout that
these conditions are satisfied, and call such a transformation normal.

We state our results in terms of the complex plane w = u--iv with
a single point w = oo at infinity. Given any set § of points w
(w % o), we define the least closed convex region K including S (the
‘convex cover’ of S) as follows. If there is no closed half-plane including
8, then K is the whole plane, including co. If there are such half-planes,
then K is their common part. We count o in K when § is unbounded
but not when it is bounded: in any case K is closed. Thus if S is a single
point, K is that point; if S consists of two points, K is the straight
segment joining them; if S is the real axis, K is the real axis with the
point co; if § is the real and imaginary axes, K is the entire plane.

Suppose now that s(y) = u-+iv is a complex function of the real
variable y, defined for ¥ > 0 and bounded in any finite interval (0,Y).
We define K (s, y,) as the least closed convex region K including all values
of s(y) for y > y,: thus K(s, y,) is included in K(s,y,) if y, > y,. Finally,
we define K(s), the kernel of s(y), as the common part of all K(s,y);
and K(¢), the kernel of ¢(z), similarly.

If s(y) tends to a finite limit @ when y —> 00, K(s) is the point a. If s(y)
is real, K(s) is the stretch lim s(y), lim s(y) of the real axis, together
with the point oo if either lim s(y) = —oo or lim s(y) = 0. In any case
K(s) cannot be empty, since it is the limit of a decreasing sequence of
non-empty closed sets; but it may consist of the single point co.

If K(s) is the single point co, we say that s(y) diverges to co. When
8(y) is real, this implies that s(y) - o0 or s(y) > —oo. The definition
gives an appropriate generalization of the notion of ‘proper divergence’
for complex functions.

We can now state Knopp’s theorem.

THEOREM 11. If the transformation (3.5.5) is normal, and t(z) exzsts
Jor x > 0, then K(t) is included in K(s).

In particular this is true, with the obvious modifications in the
definitions, for a regular and positive transformation (3.1.3).

We may assume that K(s) is not the entire plane, since in that case
there is nothing to prove. Thus what we have to prove is that any
point w outside K(s) is also outside K(f). If w is outside K(s), it is
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outside K(s,y,) for some y,. Thus we have to prove that if w s outside
K(s,y,), it is outside K(¢,x,) for some x,. We must distinguish two cases.

(1) Suppose that w 7 co. We may then suppose (making a transla-
tion if necessary) that w = 0. Since K(s,y,) is closed, there is a point
w, of K(s,y,) whose distance from w = 0 is a minimum.}f We may

suppose (making a rotation if necessary) that the plane is so oriented
that '

Wy = we—w = 4d > 0.
Then, since K(s,y,) is convex, all of its points, and a fortior: all points
of any K(s,y) with ¥ > y,, have abscissae at least 4d. Thus Rs(y) > 3d
for y = y,-
Since s(y) is bounded in any finite interval of values of y, there is an
M such that [s(y)| < M for 0 < y < y,. Since

Yo ©

[e@yydy—>0, [ c@y)dy—1
0 0
when z - o0, we can choose z, so that

Yo ©

d
[cwyndy <z [y dy >4t

0 Yo
for x > z,. It then follows that

Yo

wi(a) = R [ o ete) dy|+ 1] [ ot st0) dy)
0 Yo
> —MAM1)+4%.3d = —d+2d=d
for x > z,, and that w = 0 is outside K(f, z,).
(2) Suppose that w = co. In this case K(s,y,) is bounded; and s(y)
is bounded for y > y,, and therefore for all y. Hence |s(y)| < N for
some N, and

t@)] < N [ e(z.9) dy,

so that #(x) is bounded. Thus w = o is outside K(t,x,) for any x,.
This completes the proof of Theorem 11. In particular, {(z) diverges
to oo if s(y) does so.

3.8. An application of Theorem 2. Any transformation (3.1.3)
may be used to define a method of summation of series: if
8, = ay+ay+...4a,,

+ Actually, since K(s,y,) is convex, there is just one such point; but this is not
required for the argument.
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t,, is defined by (3.1.3), and ¢, — s, then we may say that Y a, is
summable (T) to sum s, and write

s, >¢& (T), Sa,=s (T).
We call the method regular if T is regular, so that a regular method is
one which sums every convergent series to its ordinary sum.

We shall use Theorem 2 in the next chapter to prove the regularity
of the methods of summation most useful in analysis. Here we apply
it to the proof of a theorem, which we shall need later, about methods
of less general importance.

If
(3.8.1) PS>0, Pp>0, Sp,—=0
(so that B, = py+py+...+p, > 0), and
(3.8.2) ¢ — PoSotPisite tPasn

" Do+Pr+--+Pn
when n — oo, then we say that

(3.8.3) 8n>8 (N,p,)-
We prove first
THEOREM 12. The method (N, p,) is regular.
Here

om,n = pn/Pm (n < m), cm,n =0 (n > m)’
Z lcm,n' = E Con = 1,
and c,, , > 0 for each n. Thus the conditions of Theorem 2 are satisfied.
In particular, the (C, 1) method, in which p, = 1, is regular.
In what follows we suppose, to avoid minor complications, that
p, > 0 for all n. We prove first

TrEOREM 13. If p, > 0 and s, > s (N, p,), then

Sp—8 = O(Pn/pn)'
For
Pndp = Pn tn_'Pn—l thy = S(Pn_'-Pn—l)_!'o(RL) = sp,+o(F,).

In particular, s, >s (C,1) implies s,—s = o(n), and so s, = o(n),
a, = o(n). The theorem is one of an important class which we may
call ‘limitation theorems’. There is a limitation theorem associated with
any useful method of summation, asserting that it cannot sum too rapidly
divergent series.

The next theorem, which is the main theorem of this section, concerns
the relations between the methods corresponding to two different
sequences (p,) and (g,)-.

1 The reason for this notation wi.llvappear in the next chapter.
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TeEoREM 14. Ifp, > 0,9, > 0,3 p, =0, 3 g, = 00, and
either (a)

(3'8'4) qn-i—l/qn < pn+1/pm

or (b)

(3'8'5) pn+1/pn < qn+1/Qn

and also

(3.8.6) B[pn < HQ,/q,,

then 3 a, = s (N,p,) implies 3 a, = s (N,q,).
If

bp = (p080+p181+"'+pm8m)/Pm’ Uy = (qoso+q181+"'+qm8m)/Qm’
then

d p080=})0t0’ Pmdm —P t m—ltm -1 (m > 0)’
and so
(3.8.7) u —_q°Pt+q1(Pt—Pt)+ +q"‘(Pt b))
-S. ™= 0|, 0 11— Lol By ity
Thus %,, = 3 ¢,nts, where
_ {9 qn+1)Pn qum .
3.8.8) c¢,,=({=—22)" (n<m), MM (p=1m),
( ) n n pn+1 Qm ( ) pm Qm ( )

and 0 for » > m. Since Q,, o0, Cmn —> 0 when # is fixed and m — c0. If
8, = 1 for all », then ¢,, = 1 and u,, = 1, so that

(3.8.9) D Cpmn =1
for every m. Hence the transformation (3.8.7) satisfies conditions (3.2.4)
and (3.2.5) of Theorem 1, with §, = 0 and § = 1.

It remains to verify that it also satisfies (3.2.3). In case (a), mn = 0,
2 lemal = 2 s and (3.2.3) follows from (3.8.9). In case (b), ¢,,,, < O
except when n = m, while c,, ,, > 0. Hence

o _ —m-l qm
% Icm,nl — 2 mn+ Qm

® P,
=§cmn zcmn+qm

m m
so that 2 lemnl = 2qu
m Qm
by (3.8.6), and (3.2.3) is satisfied with 2H—1 for H. Thus in either
case (3.8.7) is regular, and the result of the theorem follows.
Roughly, in case (a) 3 g,, diverges less rapidly than 3 p,, while in
case (b) it diverges more rapidly, but not too much more rapidly. If

1201,
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Py =N% @y = nB, then the first condition is satisfied if « > B > —1,
and the second if § > a > —1 (since P,/p, and Q,/q, are each asymp-
totic to a multiple of n). If p, =1, ¢, =2" then F,/p, ~n,
@,/q, — 2, and the theorem fails.

In fact, when > g, diverges rapidly, the method (N,gq,) becomes
trivial, in the sense that it will sum convergent series only. This is
shown more precisely by the following theorem.

THEOREM 15. If Q,.1/@, = 14-8 > 1, then 3 a,, cannot be summable
(N, g,,) unless it is convergent.
For @, u,, = qoso+ -+, 8, and so

(3'8'10) (Qm m—Qm—l um—l)/qm 2

where

(3'8'11) Crm-1 = _Qm—I/Qm7 cm,m = Qm/qrm

and the remaining c,, , are 0. Plainly c,, , - 0 when m — o0, and

z cm,n (Q Qm—l)/qm = 1.
Also ¢, = 8Q,,,, and so

2 ,cm,nl (Qm—1+ Qm)/Qm = 2(Qm_1/q,,,)+ 1< 28_1+ 1.

Hence the transformation (3.8.10), from u,, to s,,, is regular, and s,, —> 8
-whenever u,, — s.

Thus the series 1—1-+1—..., which is summable (N, 1), i.e. (C, 1), is
not summable (N, 27). The theorem illustrates a general principle, of
which we shall find many other illustrations later, that oo violent a
method of summation tends to defeat its own object by becoming
‘trivial’: the more delicate methods are often the more effective. Thus
the means defined by p, = (n+1)-1, for which

I, ——(so+ +ot

m—+ l) log m( m—+ l)
are more effective than the (C, 1) means. They sum any series sum-
mable (C, 1), and also series such as 3 n~1-¢ for which the (C, 1) method
fails. We shall return to these means (‘logarithmic’ means) in § 4.16.

3.9. Dilution of series. One simple application of Theorem 14 is to what
Chapman has described as the ‘dilution’ of series. The convergence or divergence
of a series is not affected by the insertion of zeros as extra terms: if either of the
series ay+a,-+ay+... and 0+0+4...4+ag+0+...4a,+0+... converges, then the
other converges to the same sum. But such a change may destroy the summa-
bility of a divergent series, or change its sum. Thus the series

1-14-1—..,, 1-14+0+4+1—-14041—...

are summable (C, 1) to the sums } and } respectively.
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Let us consider, for example, the relations between the (C, 1) summability of
> a, and that of
(1) > b, = ay+a;+0+4+0+a3+04-04-0+0+a3+...,

(ii) 3 b, = 0+ay+a;,+0+a;+0+0+0+a;+0+...,
in which a,, occurs in ranks m? and 2™ respectively.
(i) If m® < n < (m-+1)2 then
tﬂ =V§ﬂbv =m’z<”am - 8[4"‘].
Hence, if M? < N < (M41)?, we have
3.0.) fothtetty st 38+ ..+ (2M — 1)sM_1+N—M2'+ 1
N+1 N+1 N+1 M

The left-hand side of (3.9.1) tends to s if and only if 3 b, = s (C,1). Also
N+1 ~ M?, and so the first term on the right tends to s if and only if

z a’ﬂ =8 (ﬁ! 2n+ l)y
and this, by Theorem 14, is equivalent. to 3 a, = § (C,1). Finally, if either of
these hypotheses is satisfied, syy = o(M), by Theorem 13, so that the last term
in (3.9.1) is o(M .M .M~2) = o(1). It follows that ¥ b, is summable (C,1) to s if
and only if 3 a, is summable (C, 1) to s.

(ii) In this case a similar argument shows that the summability of 3 b, implies
that of 3 a,; but the converse is not true. Suppose, for example, that a, = (—1)"%,
when ¥ a,, is summable to 3. Then it is easily verified that

tot byt ot t, = H(22m—1)
for 22m—1 < n < 22m—1, so that the (C, 1) mean changes from about % to about %
when 7 increases over this interval.

It is natural to ask what is true of the corresponding Abelian limits. We shall
prove in § 4.10 that, if @, = (— 1)#, the series (i) is summable (A) to 4. We shall
also prove that x—a%+2% —..., where a is greater than 1, does not tend to a limit
when z — 1, so that, in particular, the series (ii) is not summable (A).

It is easy to prove directly that

S a,z™ —>s—» > a,x" —> 8,
whenever 3 a,x" is convergent for |z| < 1; and we shall prove more general
theorems of this kind, due to M. L. Cartwright, in Appendix V.

NOTES ON CHAPTER III

§3.2. The most fundamental theorem, Theorem 2, is due in substance to
Toeplitz, PMF, 22 (1811), 113-19. Toeplitz considers only ‘triangular’ trans-
formations in which ¢, , = 0 for n > m. The extension to general transforma-
tions, which involves no difficulty of principle, was made by Steinhaus, ibid.
121-34.

Theorem 1 was proved for triangular transformations by Kojima, TMJ,
12 (1917), 291-326, and independently, for general transformations, by Schur,
JM, 151 (1921), 79-111. Schur also proved Theorem 3 in the same paper.

A number of other general theorems will be found in Dienes, ch. 12.

§ 3.4. For Dini’s theorem, in its usual form, and connected theorems concerning
uniform convergence, see Dini, Grundlagen fiir eine Theorie der Funktionen einer
verinderlichen reellen Grisse, 148-50; Bromwich, 138—41; Hardy, PCPS, 19
(1918), 148-56.
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We have supposed in the text that the series for ¢, converges for all m. We
may if we please allow it to diverge for a finite number of values of m, i.e. suppose
it convergent only for m > m,. Here m, may prima facie be my(s), i.e. depend
upon the sequence (s,,); but it follows from a theorem of Agnew, BAMS, 45 (1939),
689-730, that if the series converges for m > mq(s) whenever s, tends to a limit,
then ¥ |c,.n] < o for m > m,, so that we may replace my(s) by a number m,
independent of (s,). See also Rogers, JLMS, 21 (1946), 123-8, and the note on
§3.6.

§3.5(3). It may be advisable to add a note about necessary and sufficient
conditions for the regularity of the transformation (3.5.5), though the further
points at issue, depending as they do on the behaviour of ¢(x,y), s(y), and #(z)
for finite « and y, belong to the theory of functions of a real variable rather than
to that of divergent series and integrals. There is a much fuller discussion of
them in Agnew, l.c. supra. The materials required for the discussion will be
found in Hobson, 2, ch. 7, and are due in part to Lebesgue and in part to Hobson
himself.

In the text we assume s(y) bounded for all y, and prove that the conditions

(A) @)= [le@y)dy <H, (B) [e(@y)dy—>1,
v .
(C) I le(x, y)| dy — O for every finite Y
0

are sufficient. It is plain, since #(x) need exist only for large x, that we may
replace (A) by

(A) v(x) < H for sufficiently large x.
It may be proved that (A’), (B), and
Y
(C) f c(z,y) dy — 0 for every finite Y,

0
are necessary conditions. The argument is much like that of § 3.3 (in the case

8, = 0,8 = 1), but, as Dr. Bosanquet has pointed out to me, an additional lemma

is needed, viz. if
Y

$(z ¥) = [ elz,y)s(y) dy
0

exists for every finite Y and bounded s(y), and ¢(x,Y) — 0 when x — o0, then
Y
| let@y)| dy < K(¥),
0

where K(Y) depends only on Y, for sufficiently large x. This result, which is true
also if s(y) is restricted to be continuous, is a corollary of what is proved in
Hobson, 2, 432 and 441-3.

This, however, leaves a gap between (C’) and the stronger condition (C). The
gap disappears when c(z,y) > 0; and in the general case we may fill it as follows.
If we consider any bounded measurable set E of positive y, and take s(y) = 1 in
E and 0 outside E, then s(y) — 0; and therefore, if the transformation is regular,

(C) J‘ c(x,y) dy — 0 for every bounded measurable E.
E

This necessary condition is stronger than (C’) but weaker than (C), and it can
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be shown that, with (A’) and (B), it is also sufficient. For, by another theorem of
Hobson and Lebesgue, (A’) and (C”) imply

Y

(@) [ el y)s(y) dy — 0

0
for every finite ¥ and bounded s(y); and this is all that is needed to complete
the proof of sufficiency. The theorem required, which is one of the cases of
Hobson’s ‘general convergence theorem’, will be found in Hobson, 2, 431.

Thus (A’), (B), and (C”) are necessary and sufficient conditions for the regularity
of (3.5.5), when we restrict ourselves, as in the text, to bounded s(y). This is
proved by Hill, BAMS, 42 (1936), 225-8. Since we are concerned primarily with
the behaviour of s(y) when y —> oo, there is no real loss in the restriction.

If we restrict 8(y) a little more, we can replace (C”) by the weaker condition (C’).
Let us suppose, for example, that the only discontinuities of s(y) are jumps. Then,
by another case of Hobson’s convergence theorem (p. 432), (A’) and (C’) imply («),
so that (A’), (B), and (C’) are necessary and sufficient when s(y) is restricted in
this way.

We may also make (C’) one of a necessary and sufficient set of conditions by
restricting ¢(x, y) instead of s(y). If, for example, ¢(z,y) is bounded, then by a
further case of Hobson’s convergence theorem (p. 423), (C’) alone implies (o),
and (A’), (B), and (C’) are again necessary and sufficient for regularity. In this
case 8(y) need not be bounded.

Finally, as Dr. Bosanquet has also pointed out to me, we may get rid of all
these restrictions on either s(y) or ¢(z, y) by using yet another theorem of Hobson
and Lebesgue (Hobson, 2, 422-3 and 438—41), and adding a fourth condition to
(A’), (B), and (C'), viz.

(D) if C(x,Y) is the essential upper bound of |c(x,y)| in (0,Y), i.e. the upper
bound when sets of measure zero are neglected, then C(x,Y) < L(Y) for every finite
Y and sufficiently large x.

In fact (A’), (B), (C’), and (D) are necessary and sufficient conditions that
t(x) — & whenever s(y) is any function of y which.is integrable in every finite
interval and tends to s when y — oo. )

This problem was considered first by Silverman, TAMS, 17 (1916), 284-94,
and Kojima, TMJ, 14 (1918), 64-79 and 18 (1920), 37-45. Kojima proves an
analogue of the more general Theorem 1. Both Silverman and Kojima suppose
8(y) bounded and restrict ¢(z, y) more severely, assuming it continuous, uniformly
in z, in any finite (0,Y). This assumption enables them to replace (C’) by the
much more drastic condition

(C”) c(z,y) — 0 uniformly in any finite (0,Y):

a condition stronger even than (C).

(4) The sufficiency parts of Theorems 7 and 8 are classical and will be found
in all the text-books: see, for example, Bromwich, 58-60; Hardy, 379-80.
The necessity of the conditions was first proved by Hadamard, AM, 27 (1903),
177-83. There are, of course, corresponding theorems for integrals.

Similar theorems for double series were proved by Hardy, PCPS, 19 (1917),
86-95, and Kojima, TMJ, 17 (1920), 213-20. All these theorems have been
generalized widely in different directions: see Moore, Convergence factors, and
Ch. VI.
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§3.6. Theorem 10 was proved by W. A. Hurwitz, PLM S (2), 26 (1926), 231-48.
The more complex conditions for total regularity of the general transformation
(3.1.3) were found by H. Hurwitz, BAMS, 46 (1940), 833-17.

The definition of total regularity is to be understood in a sense like that
explained for the A method in §1.4. If, for example, g, — oo, then the series
ty = 3 Cp.n8y must, for each m > m, where m, = my(s) may depend on the
sequence (8,) in question, either converge or diverge to co; and the values of ¢,
when the series is convergent, must tend to co with m. H. Hurwitz shows that
then ¢, , > 0 for m > m,; and n > N(m), i.e. that there can be at most a finite
number of negative coefficients in any sufficiently advanced row of the matrix
of T; but this condition is (as an addition to those of Theorem 2) necessary only
and not sufficient. Incidentally it follows that my(s) may be replaced by a number
m, independent of (s,).

§ 3.7. Knopp, MZ, 31 (1930), 97-127 and 276-305.

§ 3.8. Theorem 14 is due to Cesaro, A#i d. R. Accad. d. Lincei [Rendiconts
(4), 4 (1888), 452-7]. It was rediscovered by Hardy, QJM, 38 (1907), 269-88
(271), and is attributed to Hardy in Borel’s book (p. 115). See also Bromwich, 427.

The condition ¥ p, = o is not used explicitly in the proof, and is in fact
implied by the other conditions. If condition (a) is satisfied, then ¥ p, obviously
diverges at least as rapidly as Y g¢,. If conditions (b) are satisfied, then the
divergence of 3, g, implies that of 3 (¢,/Q,) by a familiar theorem of Abel [see,
for example, Hardy, 421, 442]; and this, by (3.8.6), implies the divergence of
S (24/P,) and 80 of 3 p,,

§3.9. If 3 a,z" is convergent for |¢| < 1, and

¢(y) = Z a,,e"’W, '//(y) = 2 Qay, e (y > 0)’
then it follows from the formula

_ 2 [ iadt
e — ‘\/_ﬂ'J. e—nhie ””F
2 dt
that $(2y) = py f *ﬁ(y’t’)e“"'?,,

and the theorem stated is an easy deduction. Compare the proofs of Theorems
28 and 30 (§ 4.8).
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SPECIAL METHODS OF SUMMATION

4.1. Norlund means. Our main object in this chapter is to enu-
merate some of the methods of summation which have proved most
useful in analysis and to establish their regularity by means of Theorem
2; but we shall add a good deal of additional matter. Some of the
most important methods, for example Cesaro’s, will be considered in
much greater detail in later chapters, and these we shall dismiss shortly
here.

The (C, 1) method of §1.3 is the simplest of what are usually called
Noérlund methods, though a definition substantially the same as Nor-
lund’s had been given previously by Voronoi.

We suppose that

(4'l°l) 20 2 O’ Po > O’T Pn= p0+p1+'"+pm
and define ¢,, by

4.1.2 - N%}) 8) — Pm30+10m-131+----|—1008m.

1 " ) Pot+Prt AP

If t,, - s when m —> 00, and s, = @y+a,+...+a,, we shall write
(413) S, > S, z a, =s§ (N’p").

If p, = 1 for all %, then ¢, is the (C, 1) mean of s,; if

_ [(n+Ek—1\ _  T'(nt+k)
Po=\ g—1 | T Tk
where % > 0, then it is the (C,%) mean.] Usually, as in these cases,
> p, will be divergent, but this is not essential. Thus, if p, = p, = 1,
and the remaining p,, are 0, then '

bn = %(Sm—l_l_sm)’

and we obtain the means s{!’ referred to on p. 21.

4.2. Regularity and consistency of Nérlund means. We begin
by determining the conditions that the means (4.1.2) should be regular.

TuaEOREM 16. T'he condition
(4.2.1) Pp/ By — 0
is necessary and sufficient for the regularity of the (N, p,) method.

+ This last condition is convenient, though not essential. If, e.g., po = 0, p, > 0,
and we write P, = gu_y, by = %1, then u, is an (N, ¢,) mean of s, with g, > 0.
1 See § 5.5.
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For, if t,, = 3 ¢,, » 8,, then

Cmn = pm—-n/Pm ("‘ < m): Cmn = 0 (n > m):

Cmn = 0and 3 [c, ] = 3 ¢, = 1. Thus the first and third conditions
of Theorem 2 are satisfied in any case. The second is that c,, >0
when 7 is fixed and m —co0. Taking n = 0 we obtain p, /P, — 0, so
that the condition (4.2.1) is necessary; and, since ¢, , < Pp—n/Bp—p, it
is also sufficient. v

We say that two methods P and Q are consistent if s, > s (P),
s, > &' (Q) imply & = s, i.e. if they cannot sum the same series to
different sums.}

THEOREM 17. Any two regular Norlund methods (N, p,) and (N,q,)
are consistent: if 8, > s (N, p,) and s, > s’ (N, q,), then s’ = s.
We write 7, = py¢,+P1¢n-1+-..+Pn . Then
NE(s) = PoQo8m+(P091+P1 90)Sm—1t -+ (PoTmt--+Pm 20)So
Poo+(Pot1+P190)+ -+ (Lot +Pm o)
Po(‘]o mt -+ m 80) + .- +Pm-1(20 S1 91 80) +Pm Q0 So
Po(Got -t am) P10+ 01)+Pm o
Do Qm N#)(S)-l- +pm QO NS")(S) N(q)
—_ == n S ,
Do Qm++pm Qo ; Ym, " ( )
m
where vy, , = Dpp Q,,/ ( Zopm_,, Q,,) if n <m and y,, =0 if n >m.
Here ypn = 0, 3 |Ymnl = 2 ¥mn = 1, and
Pm—n @n _ P @n
< -0
Y = PmntPm-n-1t-FP)6  Pun %
when m —> o0, so that the means with coefficients y,,, are regular.
Hence s, > s’ (N, ¢,,) implies s, > 8’ (N, 7,). Similarly, s, >s (N, p,) im-
plies s, > s (N, 7,); and therefore, when both hypotheses are satisfied,
s and s’ must be the same.

There is an interesting altematxve proof which embodies an important principle,
and which depends upon

TreoreM 18. If (N,p,) is regular, and 3 a, = s (N,p,), then the series 3 a,z™
has a posttive radius of convergence, and defines an analytic function a(x) which is
regular for 0 < x < 1 and tends to 8 when x — 1 through real values less than 1.

We write

p(x) = zpnx”, P(x) = ZP,,QI”, T(:L‘) = ZPntnx”s
where ¢, 18 defined by (4.1.2), with s, = ay+a,+...4-a,. Since p,/F, — 0, i.e.
P, ,/P, — 1, P(x)is convergent for |z| < 1, and p(x) also converges, to (1 —x)P(z).

1 This is & much weaker assertion than that of equivalence (§ 4.3).
4780 F
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Since t,, is bounded, 7'(x) also converges for |z| < 1. Since p, > 0 and p, > 0,
p(x) > 0and P(x) > 0for 0 < z < 1.

The function T'(x)/p(x) is regular at the origin, and expansible in a power series
w(z) = 3, w,2" convergent for small z. Since T'(x) = p(x)w(z),

Foty, = powy+P1Tpy+ ..+ D00 W
for all n. But B, t, = po8p+D18p1+ - +Pn8
for all n, and therefore w, = s,. Hence Y s,z" and 3 a,z" are regular at the
origin. Also
- "o (1— " (1—z) L@ _ T@
a(z) = 3 aya” = (1—2) To,2" = (1=2) v =B

and T(x) and P(x) are regular for || < 1. Hence a(z) is regular for |z| < 1,
except for possible poles, none of which is on the line (0,1).
T(x) _ 2Bt
P(a:) —1?(?0)— = E Cp()ty,
where c¢,(z) = P,x"/P(x). This is a transformation from ¢, to a(x), which plainly
satisfies the conditions of Theorem 5.1 Thus ¢, —> 8 implies a(x) — s, and this
completes the proof of the theorem.

Theorem 17 is a corollary, since the sum of ¥ a,, if it exists, does not depend
on the special values of p,,.
 Theorem 18 may be regarded as ‘Abel’s theorem’ for a regular Norlund
method. We cannot say that 3 a, = s (N, p,) implies 8, — & (A), since 3 a,z"
will not usually converge for 0 < z < 1; but the Abelian limit exists in a
generalized sense. We may also regard the theorem as embodying a ‘limitation
theorem’, viz. @, = O(e®®) for some c.

Finally, a(x) =

4.3. Inclusion. We now consider questions of inclusion and equiva-
lence. We say that Q includes P if ¢, — s (P) implies s, > s (Q), and that
the methods are equivalent if each includes the other. If Q includes
P, but is not equivalent to P, then we shall say that Q is stronger than
P. Here we are concerned with the case in which P is (N, p,) and Q
is (N, ¢,,).

If (N, p,) and (N, g,) are regular, then p,/F, - 0 and.¢,/@, ~ 0, and
the series
(4.3.1) p(a) =3 ppa", P(a)=3 Pa" q(z)=3¢n2" Q@)=2Cn"
are convergent for |z| << 1. The series '
(4.3.2) k(z) = X kya™ = q(2)/p(x) = Q)/P(®),

(4.3.3) Yz) = X I 2™ = p(@)/a(x) = P(x)/Q(),

are convergent for small z, and

(4.3.4) kopnt-. ~tk,Po = qn kOP Fotk, By = @Qn
(4.3.5) lognt-- Al g = P> lo Qn++ln Qo = F,.

t In the form with 0 < z < 1, # - 1: see the remark on p. 50 after the proof of
Theorem 5. We shall take such variations of the theorem for granted later.
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TaroreM 19. If (N,p,) and '(N, q.) are regular, then, in order thai
(N, q,) should include (N, p,), it is necessary and sufficient that

(4.3.6) ol Byt by | By gt B | By < H,,
where H is independent of n, and that
(4.3.7) k,/@,— 0.

If P, - o0, the second condition may be omitted.
If s(x) = X s,2", then -

3 Qu NP(s)a" = 3 (do8p+---Fqn So)2" = ¢(2)s(2)
for small z, and similarly > P, N{P)(s) = p(x)s(x). Hence
2 @QuNP(s) = X kpam 3 P, NP (s)2™,
Q. NQ(s) = k, P, NP (s)+k,_,P, NP s)+...+ko P, NP)(s).
Thus N@(s) = 3 ¢, . NPXs),
where ¢, , is k,_, B,/Q, if r < n and 0 if r > n. The first condition of
Theorem 2 is (4.3.6). The third is satisfied automatically because of
(4.3.4). Finally, @, _. ~ @Q,, for any fixed r, by Theorem 16, when n —c0,
and the second condition reduces to k,_./@,_, — 0, which is (4.3.7).
If P, > oo then, given G, we can choose r so that P, > @. If also
(4.3.6) is satisfied, then
k..l @, H
Glkn_,| < HQ,, hm' nrl < Hiim ,
I n—fl Qﬂ Qn—r Qn—f G
and (4.3.7) follows from (4.3.6). Thus (4.3.7) may be discarded when
ZPn = .

If p, = 1, P, = n+1, then
p(x) = (1—2), k(z) = (1—=z)g(z), ko = qo, ky=0—q, (n>0),
and (4.3.6) becomes

(n+l)90+n|ql—%|+ +|4n—'9w—1! < HQq»
which is plainly satisfied if g, increases with n. Thus we obtain )

TarEoREM 20. If (N,q,) is a regular Norlund method with increasing qn, then
8, — 8 (C, 1) implies s, — 8 (N, q,).

4.4. Equivalence. We next prove

THEOREM 21. In order that two regular Norlund methods (N, p,) and
(N, g,) should be equivalent, it is necessary and sufficient that
(4.4.1) 2k, <o,  3l| <co.

(1) The conditions are mecessary. Since p, > 0 and gy > 0, ky > 0
and 7, > 0. Since (N, g,) includes (N, p,), it follows from Theorem 19
that kyP, < HQ,. Thus P,/Q, is bounded, and similarly @,/F, is
bounded. .
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By Theorem 19,
P, _ P
ol | 32 1| T2 < a
n ﬂ

for r < »n. Fixing r, and ma.kmg n — 00, we see that

kol + &y [+...+ [k, | < HIm (Q,/F,).
Thus Y |k,| < oo, and similarly 3 |I,| < co.

(2) The conditions are sufficient. If 3 |k,| <oo then k, >0 and
k,/Q, - 0. Also

P Qol +Q1 n-1+ +ino an Ilnls
Pn|k0|+'P1u—llk1|++})0|knl < an lknl z ,l'n’
Thus the conditions imply those of Theorem 19, with H = 3 |k,| 3 |1,
and (N, g,,) includes (N, p,,). Similarly (N, p,) includes (N, g,).

It is plain that the conditions cannot be satisfied when p(z) and g¢(x) are
rational and one of them has a zero, inside or on the unit circle, which is not
a zero of the other. If, for example, p, = 2n+41, ¢, = n+1, then

o) = gros, )= o MO = l4m )= ﬁ
so that ¥ |k,| = co. Also
|Eo| Pyt oot |y | Py = Fo+...+ P,
is of order 73, so that (4.3.8) of Theorem 19 is not satisfied, and (N, g,) does not
include (N, p,). We shall return to this example in § 5.16.

4.5. Another theorem concerning inclusion. We now apply
Theorem 19 to the proof of a criterion for inclusion of a more special
kind. We are here interested primarily in cases in which P, tends slowly
to infinity, and p,, will be a decreasing function of =.

We shall use a lemma of independent interest.

TurorEM 22. If p(z) = 3 p,x" is convergent for |x| < 1, and
48.1) po=1, p,>0, f—’g—)—! > (n>0),

n Pp—
then
(4.5.2) (P@) = 1—c;z—cyz*—
where c, >0, Y ¢, <1. If Y p, =00, then 3 c, = 1.
It follows from the conditions that p,,,/p, increases with », and

tends to a limit which cannot exceed 1. Hence p, decreases with n.

We suppose that
{p@)}7 = yotrztyea®+..
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for small z. Then y, = 1, and it is only necessary to prove that
¢, = —yn = 0 for n > 0, the remaining clauses of the theorem being

“corollaries, since p(r) > 0 for 0 <z < 1.

We have
(4.5.3) YoPnt+ - FVnPo =0, YoPn1 T Vn1Po =0
for n > 0. It follows from (4.5.3) that
Prs1(V1Pn-1F - FVaDo) = Pu(V1Pn+ - Y1 P0)5

and so that VYni1 = Gy a V10 Vot ot CpnVns
where

a — Pr+1 Pa-m _pn—m+l — pn—m(pn+1 _pn—m-l-l) > 0.
" Pn Do Do Do P, Pn-m .
Thus if y;, Yg.-., ¥, have the same sign, y,,; has the same sign also.
Since y;, = —y,P1/Po = —Pp1 < 0, it follows that y, < 0forn =1, 2,....
Incidentally it appears that > y, 2" is in fact absolutely convergent
for |z| < 1.
We can now prove
TaEoREM 23. If (i) (N,p,) and (N, q,) are regular Norlund methods;
(ii) p, satisfies (4.5.1); (iii) g, > 0; and (iV) Pu/Pn-1 < Tu/du- (® > 7);
then (N, q,,) includes (N, p,,).
We suppose first that ny = 0, i.e. that (iv) is satisfied for all n > 0.
Since
(Got+ g 2+... ) A—cyz—...) = ky+ky, 24...,
(Potpy 2+ )(1—c 2 —...) = 1,
we have k, = ¢, and

Zn—C1Tn—1—+—Cnqo = kn, Pp—C1Pp1——ChPog =0
for n > 0. Hence

k, In— q P~ P

A=l it —c, 2> 11—t —, 2 =0,

n Y qn "0 Pa " Pn

and k, > 0 for all ». We can now verify at once that the conditions
of Theorem 19 are satisfied. For the first

Vko| Pyt 4-1Kp | Py = kg Pptoc+-Ep By = @
and for the second
knpo < kopn+"'+knp0 = Gns

so that k, = O(q,) = 0(@,), by Theorem 16. This proves the theorem
in the special case ny = 0.
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Passing to the general case, we have |
PplPn-1 < Qufln-g (0 = ng+1, ng+2,...).
We write Tpn =DPp (n=mny ny+1,..),
and increase p,,, _,, if necessary, to a value r,,_, such that

no/ No—1 ~X m+17 ne? / ne—~1 < qm/Qno-l’
then p,, _, to a value 7, _, such that

Tno-1/Tne=2 < TnglTno-15 Tne=1/Tne-2 < Qno-1/Tn,—2>
and so on down to p, and r,. Then

n/ n-1 =3 n+1/r1v 7‘n/ Tn— < Qn/ In-1
for n > 0; and p,, = 7, [r, satisfies

po=1, pn >0, Pr+1/Pn Z PnlPn—1> PulPr- < 9n/€n—
for n > 0. It follows from what we have proved already that (N,g¢,)
includes (N, p,,), or, what is the same thing, that (N, ¢,) includes (N,r,,).
It is therefore sufficient to prove that (N,r,) includes (N,p,). We

write Fo= P8, (=0,1,.,1,—1)

go that rx) =S r,a" = p(x)-{-ﬂglsn ™ = p(x)+8(x),
say. By Theorem 22,
P}t =1—-Z opa = F ypam,
where 3 |y,| < 14 Y ¢, < 2. Thus, if
k(x) = r(@)/p(x) = Z k,an,

3() =14 z 8nx”2y,,x“
() 0 0
and so Elknl\I+zsn2|7’n|<1+2zsn=ﬂi
say. Hence, first, k, = o(1) = o(R,); and secondly,
|ko| Bt + Ry | Py < HE, < HR,.
These are the two conditions of Theorem 19, with r for ¢, and therefore
(N,7,) includes (N, p,).

4.6. Euler means. We defined ) a, = s (E, 1), in §1.3(4), as mean-
ing > 2-"-1, = s, where

b, = ao+(1l")al+(g)a2—|—...+an.

m bn
Here ty = z o4t
n=0

we have Zk x”=l+
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and we can express t,, in terms of s, as follows. If £ is the operator
defined by Eu, = u,,,, then b, = (1+ E)"a, and

m=3> ()

Now "
142\ 11— {%(1+x)}m+l . 2_m_1(1+1)m+1___(1+x)m+1
2”2_0( 2) T2 13142 1—z
~ ome m41\1—ar & 1 R i
_2 1;( ! )l-x —2 1;( )(1+x+x+ )

and, since this is an identity between polynomials, we may use it with
E for z. Thus
m+1

t, = 2-m-1 z (m+l)(1+E+ 4 EnY)a,

n=1
m+1 m
'm-1 m-+1
= 2-m-1 ) — 9-m-1 .
Z( n )3"‘1 Z(n—l—l)s"
n=1 n=
Hence t,, = Y, ¢,,, 8,, Where
m-+1
= 2—m—l(n+l) (n» < m)s Cnn = 0 (n>m),
Cpn = 0, zlcm,nl =zcm,n= 1—2-m-151,
and ¢,,, < 2™-Y(m--1)*+! > 0 when m - 0. Thus the conditions of
Theorem 2 are satisfied, and

THEOREM 24. The (E, 1) method is regular.
4.7. Abelian means. If

(4.7.1) o< <A< <, A, —>00,
Y a, e~M2 is convergent for all positive z, and
(4.7.2) flx) =S a,e™z>s

when z — 0, then we say that Y a, is summable (A,},), or (A,]), to
sum s, and write
(4.7.3) Sa, =238 (A).
When A, = 7, the (A, ) method is the A method of §1.3(2). We shall
sometimes write (A, k) for (A, n¥).

It will be convenient to consider a more general method of summa-
tion. We suppose that (¢,(x)) is a sequence of functions defined in an
interval 0 < z < X, and that

(4.7.4) nl@) > 1,
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for each n, when z - 0. If
(4'7'5) ¢(x) = z a, ¢n(x)
is convergent in some interval 0 < < X, < X, and $(x) > s when
x — 0, we say that > a, is summable (¢) to sum s.

THEOREM 25. In order that the ‘¢’ method should be regular, it is
necessary and sufficient that
(4.7.6) 2 [$n@)— (@) < H, _
where H is independent of z, in some interval 0 < z < . In particular
this condition is satisfied if
(4'7'7) : Y < ¢n+l(x) < ¢n(z)'

(1) The condition is sufficient. It follows from (4.7.4) that |$y(z)| < H,,
say, in some interval (0, £), and from (4.7.6) that

[$a@)] < [$a@)|+ S $ruae)— @) < H+Fy

in some such interval. Thus the system (¢,,) is uniformly bounded in
such an interval.
Suppose first that s, > 0. Then

N, N=1
(4.7.8) % ap by = ; sn(‘l’n—?snﬂ)‘*'sNd’N'
The last term tends to 0, and so
(4.7.9) ¢(x) = z 8n{¢n(x)_¢n+1(x)} = 2 C,(Z)8p,

say. It follows from (4.7.4) that c,(x) - 0, for each », when z > 0, and
from (4.7.6) that Y |c,(x)| < H; and hence ¢(x) — 0.
If s, - 8, ay = ay—s, and a;, = a,, for n > 0, then s, - 0 and
(@) = 3 a,¢,(x) = () —5¢o(x) > 0
when x - 0. Hence, by (4.7.4), ¢(x) - s.

(2) The condition is necessary. It is enough to prove that it is satisfied
if s, - 0 always implies ¢(z) > 0. We consider first a small fixed =.
Since Y a,, ¢, is convergent whenever s, — s, it follows from Theorem
7 that 3 |, —d,4| < oo for each such x. Hence ¢,(x) is bounded for
such an z, and we can deduce (4.7.9) as under (1). It then follows from
Theorem 5 that Y |c,(x)| < H for small z, and this is (4.7.6).

Finally, if ¢, satisfies (4.7.7), then

z lqsn_-ﬂbn-ﬂl = z (¢n_¢'n+1) = ¢0—hm ¢n < ¢0 < Hl?
since ¢, is bounded in (0, £).

1 Here we appeal to the analogue of Theorem 4 mentioned on p. 60 but not stated
explicitly. We cannot appeal to Theorem 5 because 3, cy(x) does not necessarily tend
to 1. .
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There is plainly a variant of the theorem in which z is replaced by
an integral parameter m which tends to infinity.

We add a remark about the special case in which ¢, is a positive decreasing
function of n. There is a simple but useful theorem which we shall need later
and which it is convenient to prove here.

THEOREM 26. If b, increases to infinity with n, and Y, u, 18 convergent, then
(4.7.10) Vi = U403+ .0, = bottyg+by ty+..c+-bp %y = 0(by).

Kw, = u,+upy+..., then w, — 0. Also

n n
Vo= g b (Wi — Wi y) = bywy+ ? (b —bm 10 —bp Wy 13

and so V“ = T”b“’*-o(bn)’ where

b b,—b
T =g Wttt
n n

by Theorem 12.
It follows from Theorem 26 that (4.7.9) is true whenever ¢, decreases to 0 as
n—> o0 and 3 a,¢, is convergent. For, taking

b, = ¢, Up = GuPpy Uy = Gy = bpuy,
in Theorem 26, we see that &,¢, — 0, and (4.7.9) follows from (4.7.8).

The conditions of Theorem 25 are plainly satisfied when ¢,,(x) = e~%=,
Hence

THEOREM 27. The (A,)) method is regular. In particular, the A
method ts regular.

There is no general theorem for Abelian methods corresponding to
Theorem 17: different methods may well sum the same series to different
sums. Thus 1—14-1—... is summable (A) to sum }, but summable
(A,2), when (},) is the sequence 0, 1, 3, 4, 6, 7,..., to }: see § 3.9.

b,—b

b—”_lw” - 0,
n

4.8. A theorem of inclusion for Abelian means. In this section
we prove one theorem of inclusion for two systems of Abelian means.
Others will be proved in Appendix V. As is to be expected after the
last remark of §4.7, all these theorems have a very special character.

THEOREM 28. If (i) Ay > 1, p, = log),,
(ii) Ya,=s(A,]),
(i) 3a,e? =73 a,evieh =3 q, 1
18 convergent for y > 0, then 3 a,, = 8 (4, u).

We need two preliminary theorems (the first of which is important
in itself).
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THEOREM 29. Suppose that fo(x), f1(x), f2(x),... 1s & sequence of functions
defined in an interval of values of x; that
(48.1) |fol)] <H, (482) 3 |fu@—frul)] <K,
where H and K are independent of x; and that > b, is convergent. Then
> b, fu(x) is uniformly convergent.

In particular the result is true if f,(z) is monotonic in %, and
uniformly bounded, since then

3 Va—Fursl = | Z (fafusa)] = |folimf, |

We might replace the interval by any set of real or complex z.
We note first that, after (4.8.2), 3 (f,—f,+1) is convergent for each «,
so that f,(z) - f(x), say, when n —o00. Also

(4.8.3) £l < |fo|+"§‘|f;—fz+1| < H+K.

We suppose that 3 b, = B, and write
B, = by+b,+...+b,, B,= B,—B,
with the convention B_; = 0, B_;, = —B. Then 8, > 0, and we can
choose N, so that |B,| < e forn > Ny—1. Also

N N N
(4.8.4) g bnfn = g (ﬂn—ﬁn—l)fn = _BN—lfN+ glﬁn(fn_fn-i-l)"*‘ﬁN’fN'
for N' > N > 0. It follows from (4.8.2)—(4.8.4) that
| gbnf,,l < 2¢(H+K)+eK = (2H+3K)e

for N’ > N > N, and each z; and this proves the theorem.
When N = 0 and N’ — o0, (4.8.4) gives

(4-8'5) z bnf'n = Bf0+ ZIBn(fn_ffw-l) = Bf0+ z (Bn""B)(fn—fn+1)
Since fy = f+ 3 (fa—Fas1)» We have also the simpler formula

{4.8.6) 2 bofn = Bf+ 2 Bn(fn—fn+1)~

But the series on the right of (4.8.8) is not usually uniformly convergent. Suppose,
for example, that
fo=1 fa=2" n>0,0<g2<<1)

so that f = 0 for z < 1 and f = 1 for x = 1, that b, = 1,&ndthafb,,=0for
n > 0. Then B, = 1, 8, = 0 for n > 0, and (4.8.6) becomes

1 =f+ 3 (xz*—an*).

The last series is neither uniformly convergent nor continuous, having the sum 1
for x < 1 (when f = 0) and 0 for « = 1 (when f = 1).

The conditions of the theorem are plainly satisfied when
fol@) = €07 (> 0) or e (x> ).
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If Y b, is convergent, then ¥ b, e~ is uniformly convergent for z > 0;
and if the last series is convergent for > 0, then it is uniformly
convergent in any interval x > z, > 0.

Our second preliminary theorem is

THEOREM 30. IfAy > 1, d(w) = I a,e™%,and 3 a, A, is convergent
for y > 0, then

[

I‘()

If w and y are fixed, then A e~*® decreases from a certain 7, so that
Sayehw =3 Nehv.a,177)

is convergent for w > 0. Hence it is uniformly convergent in any
interval 0 < w <w K< W <00, and

(4.8.7) $y) = Sal5? = wh~Y$(w) duw.

w w
(4.8.8) [ wv14w) dw = 3 a, [ wr-te-w dw.

We wish to replace w and W here by 0 and co. For this, it is sufficient
to show that the series

w o«
(4.8.9) Ya, f wV-le=Mw du, Sa, f w¥—le=Mw dap
0 W

are convergent and tend to 0 when w - 0 and W — 0.
The first series (4.8.9) is

p
z :—g f uV-le—% dy —= z Z—gxn(w) = > b, xp(w),
0

say. Here 3 b, is convergent, by hypothesis, while y,(w) is positive,
increases with n, and is uniformly bounded for all n» and w. It follows
from Theorem 29 that 3 b, x,(w) converges uniformly in w, and there-
fore tends to 0 when w — 0. The proof that the second series (4.8.9)
tends to 0, when W — o0, is similar. v

It is now easy to prove Theorem 28. We may suppose s = 0, so that
¢(w) > 0 when w — 0. Then

3 ©
W) = P(y)( f + J )wv-lqs(w) dw = P+Q,
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say. Since ¢(w)— 0, we can choose 8 so that |[p(w)| < e for 0 < w < 3,
and then

T'(y) D)

for sufficiently small y. Also Y a, e~%—2 jg uniformly convergent for
w > 8, so that |#(w)| < Hew, where H is independent of w. Hence

]
|P| < — fw"-ldw —GSL<25
I(
°

H [
—_ —As -
'Q'<81-vr(y)f" ©dw=>0
)

when y - 0, and |¢i(y)| < 3e for sufficiently small y.

It is easy to give examples of series summable (A,logn) but not
summable (A): we shall see, for example, that > n-1-¢%, where ¢ > 0,
is such a series.t

4.9. Complex methods. It is often important in applications to
consider the limit of a series 3 a, e~*# when z — 0 along a path in the
complex plane, usually a straight line making an acute angle with the

positive real axis.

If z = z+1y, 3 a,e ¢ is convergent for > 0, and
(4.9.1) f@) =3 a,e™M*>s
when z - 0 along any path lying in the angle |y| < xtana, where
0 < a < }m, then we shall say that
(4.9.2) Sa, =3 (A a)
This method also is regular. -

TaEorEM 31. If I a, converges to s, then > a,e~? -3 when z— 0,
uniformly in the angle |y| < ztana.

We may suppose s = 0. If > 0, then

@) = 3 ape e = 3 (e Mi—e ),
or f(z) = 3, ¢,(2)s,, where
ca(2) = eME—ehii® = Aen2,

Also

3 lea@) =X |Aehr| = 3

An+1
va
)!' ze

A-+1

2] - -
< |z|vzx[ g—‘xdt = ?er Mz L e~MZgec .

+ See § 7.9. When we speak of summability (A, log n) we suppose our series to begin
with the term in a;, so that 2, is replaced by A;.
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Hence, if we choose N = N(e) so that |s,| < € for z > N, we have

-
lg cn(z)s,,| < eseca

for N’ > N, so that ¥ c,(2)s, is uniformly convergent. Since c,(z) > 0
when z - 0, f(z) > 0 uniformly in the angle.

We have proved the theorem directly: it might also be deduced from
appropriate modifications of Theorem 5 or Theorem 29.

4.10. Summability of 1 —1-+1—... by special Abelian methods. The series
1—141—... is summable (A) to }. It is instructive to consider its summability
by other Abelian methods.

It is familiar in the theory of elliptic functions that
(4.10.1) 1—2¢+204—2¢° + ... = TL {(1—g*™1)x(1—q™+2))
for |g| < 1, and the product plainly tends to 0 when ¢ — 1 by real values. It
follows (writing e—= for q) that

l—e*fet®—e 4. >4,
so that 1 —1-+41—... is summable (A,n?) to }. It is also summable (A, n*) for any
positive & (compare Appendix V).

On the other hand, if ¢ > 1, then
(4.10.2) F(z) = x—a0+29 — 20 ...
does not tend to a limit when z — 1. To see this, we observe that F(x) satisfies

the functional equation
F(z)+ F(2%) = =,

_ N (=D 1y
is another solution. Hence ¥(r) = F(x)—®(x) satisfies ¥(z) = —¥'(22), and is

therefore a periodic function of loglog(1/x) with period 2loga. Since it is plainly

not constant, it oscillates between finite limits of indetermination when z — 1,

log(1/x) — 0, loglog(1/x) — — 0. But ®(x) — §, and therefore F(z) oscillates.
It follows that 1—1+41—... is not summable (A,)) when A, = a® (a > 1).

4.11. Lindeléf’s and Mittag-Leffler’s methods. There is one
(A,A) method which is particularly important in the theory of analytic
continuation. In this
(4.11.1) Ay =0, Ay =mnlogn (n>1).

If then 3 a,e~= — s, we write 3 a, = s (L).

A power series » a,z", convergent for small z, defines an analytic
function f(z) with a branch regular at the origin. In what follows we
use f(z) to denote this branch of the function, made uniform by an
appropriate system of cuts in the plane of z. The ‘Mittag-Leffler star’
of f(2) is the domain formed by drawing rays through 0 to every singular
point of f(2) and removing from the plane the parts of the rays beyond
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the singular points. Thus the star of ¥ z» = (1—2)-1 is the plane cut
along the line (1,00). The importance of the L method arises from
the fact that it sums > @, 2" throughout the star of f(z). We shall see
later (§8.10) how this general theorem may be reduced to the special
case in which f(z) is the funetion (1—2)~1: here we consider the special
case only. It will be convenient to change our notation, writing & for .

THEOREM 32. If D is any closed and bounded region which has no
point on (1,00), and A, is defined by (4.11.1), then
(4.11.2) S eShzn > (1—2)-1
when 8 — 0, uniformly in D.

We define A(n, R) as the region in the plane of z = re® in which
(4.11.3) 0<7<0<2m—y, r<R;
and, since (4.11.2) is plainly true in any circle r << 1—{ < 1, it will be
sufficient to show that
(4.11.4) gs(z) = iz"e—s"m” - z/(1—2) = g(2)

uniformly in A.

We define a contour C in the plane of u = pe‘¢ by the circular arc
p=13, |¢| < ¢y < 47 and the two rays p >}, |¢| = ¢,. We shall
suppose, as plainly we may, that ¢, and 8, are chosen so that
(4¢.11.5) sing, >}, tand, > (4¢log R)/n, 8oy < in;
and we consider the integral

- du

(4.11.6) Ij(z) = f ze-Sulonu 2,
round C, where

2% = ¢vlogz  logz = logr+i0, log u = log p+i¢,
and C is described so as to leave the origin on the right. Since

|e-2u1o8%] = |exp{—3p(cos §+isind)(log p+id)}|
= exp(—38plogpcos¢-+Sppsing),
it follows from Cauchy’s theorem that Iy(z) = g5(z) for 8 > 0 and z in
A.t We now prove that I3(z) is uniformly convergent for 0 << 8 < §,
and zin A.
On the upper ray of C, we have
|e-3ulo8 %[ — exp(—8p log p cosdy+Spg,sin ¢y),
1 The integrand is dominated at infinity by the factor exp(—dp log p cos ¢).
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|2%| = |exp{p(cos ¢, sin ¢y)(log r+i6)}|
— exp(plog 7 cos ¢o—psin d) < exp(plog B c0s $g—p7sin dy),

1 1 1
e2miu__ ] == 1 _6—2"P5m¢o < 1—ei7 :

It follows from these inequalities and (4.11.5) that the integrand in
(4.11.6) is majorized by a constant multiple of
exp(plog R cos g,—pnsin ¢y) < e-ipnsinde < g=ipn,
and that this part of the integral is uniformly convergent.
The proof for the lower ray of C is similar.t
Since the integrand is uniformly continuous with respect to 3 and 2
on any finite stretch of the contour, and Iy(2) is regular in A for & > 0,

it follows that 2
Ie) > I(z) = f Sy
. 2

uniformly in A, and that the right-hand side is an analytic function
of zregular in A. It is g(z) when —1 < z < 0, and therefore throughout
A; and the theorem follows.

There are other methods of summation, not (A,A) methods, but of
similar type to the L method, which have the same property. The
most important is Mittag-Leffler’s method, which we call M, and in
which Y a, is defined as @
lim > tn
30 & I'(1+4-87)

It is easy to prove, by a variant of the method used above, with
I'(1+-8u) in the place of e31°8%, that 3 2" is summable (M) to (1—2)-!
uniformly in A. The details naturally depend on the asymptotic
properties of the gamma-function of a complex variable: an alternative
proof will be given later.} Yet another method Wlth similar properties
is Le Roy’s, in which Y a, is defined as
| T(1+n)
{—1—0 r+4+n) *

4.12. Means defined by integral functions. We consider next an
important class of methods of which the best known is Borel’s. Let us
suppose that J(z) = 3 p, z" is an integral function, not a polynomial,
with non-negative coefficients p,,. If

S(z) _ Z.pn ST
(4.12.1) T S
1 |etmiv| = e?npsind, is large for large p: 2m—0 takes the place of @ in the argument,

and 27—60 > .
1 See p. 199 (note on § 8.10).
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when z - 00, then we write

(4.12.2) : S a, =s(J).

The simplest definition of this type is Borel’s, in which p, = (n!)-1,
J(x) = e=: if

(4.12.3) e-28(z) = e—= Z Sn%’; >
when x — o0, then we write
(4.12.4) >a,=s (B)

There is an alternative definition of Borel which we shall consider in
§4.13 and Ch. VIII.

Here Hx) = 3 cu(2)8,,

cn(x) =an”/zpnx" =0, cu(x)—>0, z [en(2)| = Z cn(x) =1,
and the conditions of Theorem 5 are plainly satisfied. Thus

THEOREM 33. The J method is regular.

The J method provides a convenient opportunity for a more explicit
statement of a general principle which we have referred to alreadyt
and of which we shall find many applications later. A method may be -
said to be ‘powerful’ if it can sum rapidly divergent series: thus Borel’s
method is more powerful than the (C,1) or A methods, which will
not sum ) 2" outside its circle of convergence. Borel’s method, on the
other hand, sums it in the half-plane Rz << 1. For in this case
8, = (1—2"*)/(1—z), and

S@) _  _1—2"ar 1 ___ze‘“‘-’)"_> 1

Jx) & 1—2z nl 1—z 1—z 1-2’
provided only that Rz < 1. In particular it sums the series for all
negative z.

In this sense the J method is the more powerful the more rapidly
P, tends to 0. Thus Borel’'s method sums 1—a-+ta2—a®+... for all
positive a, but it will not sum the series for which s, = (—1)"n!a®
because Y (—1)*(ax)" is not convergent when ax > 1. If we take this
s,, and p, = (n!)~2, then

s@ = (1

n!
and S(x)/J (x) > 0.
We shall, however, find that, usually, the delicacy of a method decreases
as its power increases, and that very powerful methods, adapted to the

—ew,  J@ = (:—:;, = Io(2+).f

1 See § 3.8.
t I,(x) being Bessel’s function with imaginary argument.
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summation of rapidly divergent series, are apt to fail with divergent
geries of a less violent kind (such as we encounter, for example, in the
theory of Fourier series). Thus we shall find in §4.15 that the J method
with p,, = e~ fails to sum 1—1+1—....

We supposed in (4.12.1) that J(z) is an integral function and that x-—- co.
There is & modification in which the radius of convergence of (4.12.1) is finite.
In this case we may take it to be 1, and must suppose 3 p, divergent. The
definition is still expressed by (4.12.1), but now z — 1, and the method then re-
sembles the ‘ Abelian’ methods of §§ 4.7-10. Thus, ifp, = 1,then J(z) = (1—z)™?,

and the definition becomes (1—z) X ¢,2" — s, i.e. ¥ a,2"-—> 3. This is the A
definition.

If p, = (n+ 1)}, the definition becomes
1 )"1 z L2~
(log—l_x n—+1x —>3

@
(4.12.5) _ J {(—z dt ~ slog-léx,,
[1]

or

where f(z) = ¥ a,z". Itis plain that f(x) — s implies (4.12.5), so that the method
includes the A method.

4.13. Moment constant methods. A moment constant u, is a
number of the form
(4.13.1) P = fxn dx,

0

where y = x(z) is a bounded and increasing function of x such that the
Stieltjes integral (4.13.1) converges for all n. If ¢ is the lower bound
of numbers # for which

fw dx(u) = 0,

then f dx(u) = 0, f dx(w) >0 (z <§)
é+o z
@ £-0
and  p, = [ardy= [ @mdx HxE+0)—x(E—O",
0 0
when ¢ is finite. Usually, however, £ will be co; and we shall suppose,
when £ is finite, that y is continuous.at £.7

If
(4.13.2) a(x) = z (@n/pn)z™,
T See the note at the end of the chapter.
4780

G
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then formal term-by-term integration gives
j a(x) dx = E (@n/pa) J. zrdy = Z Ay

and this suggests that we take the integral on the left as the basis of
a definition of the sum of ¥ a,.
We write

(4.13.3) f a(@)dy = s

if either (i) £ = co, the series (4.13.2) converges for all z, and
x
li dx = s,
E m J. a(x)dy = s

or (ii) £ < 0, x(é+0)—x(£—0) = 0, (4.13.2) converges for 0 <z < §,

and
£—-0 X

J. a(x)dy = lim fa(x) dx = s;
H X—{-05
and

(4.13.4) Sa, =35 (u,)
in either of these two cases.
TueOREM 34. The (u,) method is regular.
If ¥ a, is convergent and 0 < X < X; < £ < o0, then

(4.13.5) oy = J'x" dy > X;*fdx >0

* and (4.13.2) converges uniformly for 0 < z << X. Also

X © ©
‘Lnfxndx < |3n|(§_) de fdx—>0
H X1 0 X

n
0
when n-—>o0, for X < X; and so for X < ¢, In particular, taking
s, =1,

(4.13.6)

X
(4.13.7) #i f an dy — 0.
" (1]

It follows from the uniform convergence of (4.13.2) that
X

= (Sie)on- 2 oo
0

0
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and from (4.13.6) that x
1 1 1
(4.13.8) t(X) = z 8“(/1_’;6" x” dx ———— J X +1 dx) = 2 cn(X)&n,

say. Plainly ¢, (X)— 0 when X — £. Also

ofwx"“ dx fx” dx — fx"’rl dx fx” dy

@

= fxn+1 dy fx"dx — fz’”‘l dx fx" dy
x 0 0 X

-] X X -
X(fx”dxfxndx_ fxndxfxndx) =O'T
4 ] 0 X
Hence co(X) =0
X p.¢ 1 X
3 lealX)| = 3 e0(X) = — [ dyx —lim = f iy =1 [ ay,
05 o bn Ho s

by (4.13.7), and Y ¢,(X)—>1 when X — ¢, Thus the conditions of
Theorem 5 are satisfied, and the method is regular.
The most important case is that in which

x(x) = 1—e=*  (a > 0).
Then g, = 1 f e UD-Tpm oy — J' e-vum gy = T(na-1),
[+ 3

and the definition is

(4.13.9) f = sz"_:“l) —s.

In these circumstances we write
(4.13.10) >a,=2s (B,a).
In particular, when « = 1, we write
(4.13.11) z a, =38 (B').

We shall see in Ch. VIII that the definitions (4.13.11) and (4.12.4) are inti-
mately connected and ‘all but’ equivalent. We were led to them in quite
different ways, and their close connexion is due to the special properties of the

exponential function.
If « = 1, a, = 2", then

fe—m Z (zx_)”dz = fe—e(l—z)dx _ 1
n! 1—2

when Rz < 1. Thus the B’ method, like the B method, sums > z"in this half-plane.
t If ¢ < oo, the upper limit c0 may be replaced by f—O throughout.
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We make the moment method more ‘powerful’ by increasing the magnitude
of u,. Such an increase of power carries its disadvantages with it. Thus, if

(4.13.12) dy = eHosaiz-1dy (k> 0),
then
[ -
(4.13.13) o = f e—klogzyipn—1 go f e—kuttnu gy, — J (%),en’/dk,
0 “w |
and the definition becomes
<o

(4.13.14) J (1_’:) J eI gnu—ntitkg ) dy = .

-

We shall see in § 4.15 that this method will not sum 1—1+4+1—....

If§{=1, y=aforx <1, y=1 for 2 > 1, then u, = (n+1)! and the
definition is
. 1—e

lim J‘ S (n+1)a,z" do = s.
0 4

This is plainly equivalent to the A definition.

4.14. A theorem of consistency. There is no general theorem of con-
sistency for moment constant methods: different methods may sum the same
series to different sums. But there is a special theorem of consistency which is
sometimes useful, in which we suppose that £ = o and

(4.14.1) x(@) = f $(¢) dt.
(1]

THEOREM 35. Suppose (i) that ¢(x) is positive and decreasing; (ii) that
po = [ 2"(2) do
18 convergent for n > 0; and (iii) that $({x)/P(x) is, for every fized { > 1, a decreasing

SJunction of x; or at any rate that conditions (i) and (iii) are satisfied for x > x,.
Suppose further (iv) that ¥ a,z" is convergent for small z; and (v) that

(4.14.2) f (z :—::c“)¢(x) dz = s,

so that 3, a,, 18 summable (u,) to s. Then Y a,z"isuniformly summable for0 < z < 1;
80 that it represents an analytic function f(z), which is regular on the segment (0, 1)
and tends to 8 when z — 1 through real values less than 1.
This is & theorem of consistency because it shows that the sum s is fixed by
the function f(z) independently of the special ¢(x) and u,, used in the definition.t
It is plainly sufficient to prove the series uniformly summable in any interval
0 < 8 < z < 1. The series g(z) = 3 (a,/ps)x" converges for all z, and

[ 9(@)p() d= = s,
by (4.14.2); and the sum of ¥ a, 2" is

(4.14.3) j g(zx)p(x) da: = ::f g(x)¢(§) dz,

1 Compare the second proof of Theorem 17 in § 4.2.°
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if this integral is convergent. Now if X > x, then

; -
J 004(2) de = [ gorpior £ e — EEL) J o@1p(a) dz,
X

where X < X” < X', by condition (iii). The outside factor does not exceed 1,
and the second is numerically less than € for X > X,(e). Hence the integral
(4.14.3) converges uniformly for 0 < 8 < z < 1, and the theorem follows.

The conditions are satisfied, for example, if ¢(x) = e~4%°2%~1, where 4 > 0,
a>0,a>0.
As an application, suppose that
1
S a, = 1— “(“2't' D = (142

for small z. If we take ¢(x) = e~%, as in Borel’s method, we obtain the sum

_ a(a+1) i }
J.e z{l (“), rz+ @ dx,
and the value of the integral is not obvious. It is much more convenient to take
¢(z) = z*1e~%, when pu, = I'(n+a) and we obtain

—a, —1 _ %z x’z’ ) 1 —2(1+2) 01 Jp — -a,
I‘(a)f s “nuter—- dx = I‘( ) € 281 dx = (142)
provided only that ﬂiz > —1.

4.15. Methods ineffective for the series 1—1+1—.... In this section
we illustrate the general principle stated in § 4.12 by showing how two ‘violent’
methods, one of ‘integral function’ and one of ‘moment constant’ type, fail to
sum 1—-141—....%

(1) Let us take p, = ¢*", where ¢ > 0, in the definition (4.12.1), and write
et for . Then, since 8,, = 1 and 8;,,,; = 0, we have to determine whether

z e_—lcm’+:um/2 g—cnitun

tends to a limit when w — c0. It is plain that we may replace this ratio by
Fy(u)/Fy(u), where F; and F, are the sums extended from —oo to 0. Now

R =9(2%),  mw =a(3|2),
and 19';(‘0+M|T) = "‘”"‘"‘”’""’0,(141‘);
and it follows from these formulae that F(u)/Fy(«) has the period 4c. Since it is
plainly not constant, it does not tend to a limit.

(2) Let us suppose x and u, defined as in (4.13.12) and (4.13.13). Then the
sum of 1—1+41—... is defined as

(4.16.1) J(f) f e—"“'( 3 (—l)"e‘("’/"‘)+"“) du,

n=0

—m
if this integral is convergent; and it is plain that the convergence will not be
affected by replacing the lower limit of summation by —co. But
1

Py = 3 (—1peoarm —g,(2) 1) — 3,0oir),

+ See also § 4.10, for the failure of a violent method of Abelian type.
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and it is easily verified that
(n/2k)+a a
f e F(u) du = (—1)* j k4 F(u) du
n/2k 0
for any a. It follows that the integral (4.15.1) is not convergent and the series
not summable.

4.16. Riesz’s typical means. The ‘typical means’ of M. Riesz are
generalizations of certain means which we shall consider in §5.16, and
a full discussion of them would be more in place in a book dealing
specially with the theory of Dirichlet’s series. We therefore dismiss
them very shortly here. :

Suppose that A, satisfies (4.7.1), that

Axx) = agtay+...Fa, =8, A, <T< Ansa)s A\x) =0 (<),
that « > 0 and that

(4.16.1) Af(w) = % f Ay(x)(w—z)<-dx > s

when w —oo0. Then we say that Y a, is summable (R,A,«) to s. We
have also, by partial integration,

Aw) = o f (w—)< dd)(@) = ; (1—%}‘%.
® <w

We can write (4.16.1) as
A (@) = [ $(@,0)d)(@) de,
where
= ko rw—a)l 0<z<w), $=0 (z>a)

Then ¢ > 0, ¢ = O(w™?) for large w, uniformly in any finite interval
of z, and

of 9@, ) ds = = f (0—a)tde = 1.

Hence, after Theorem 6,
THEOREM 36. Riesz’s typical means are regular.

It is easily verified that the (R, », 1) method is equivalent to the (C, 1)
method. We shall prove more than this in §5.16.

Another interesting case is that in which A, = log(n+1), « = 1.
We prove
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TrEOREM 37. In order that > a, should be summable (R, A, 1), with
A, = log(n+1), to s, it i8 necessary and sufficient that

(4.16.2) .

1
10g(n+1)( °+ + + - +n+1)

In other words, the means are then equivalent to the logarithmic

means of § 3.8.
If w = log(g+1), » = [g], then the definition (4.16.1) reduces to

m-+2 Sp q+1

lo ,
lg(q+l)2 mlog T T gl 1) a1 °

(4.16.3) o

and we have to prove this equivalent to (4.16.2).
Let us assume (4.16.2), and write

u, = Sn
" a4l
Then U, ~ slogn, so that u,, = o(logn) and s, = o(rlogn). Hence the
last term in (4.16.3) tends to zero. Also

m+2 1 1 1
m+1 m41 2(m+1)2+0(‘3)’
so that the sum in (4.16.3) is

n—1 n—1 n—1

Zu—— S 0foz) = B—10u+E,

0

Un = u0+u1+ cen +un.

say. Here

Un
+—= =031

Z m+l Z (m—+ 1)(m+2)

because U, = O(logn), and R, is plainly O(1). Hence (4.16.3) reduces
to P, ~ slog(g+1), which is equivalent to (4.16.2). :
The proof of the converse is similar but simpler, since we may take

o = log(n+1).

4.17. Methods suggested by the theory of Fourier series. The
series

(4.17.1) $+-cos0+cos 20+4-... = >’ cosndt

is fundamental in the theory of Fourier series. Its partial sum is
_ __sin(n+34)8

(4.17.2) 8,(0) = % cosvl = osmld = D,(8),

1 The dash implying that the term with n = 0 has a faotor §.
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and its means defined by (3.1.3) and (3.1.4) are

(4.17.3) t,(0) = 3 c,,, D,(0), (4.17.4) Hz,0) = 3 c,(x)D,(0).
In particular the (C, 1) and A means are
__ 1 (sin}(m+1)h)?2
(179 U e i
1—g2
(4.17.6) tr,0) = g

2(1—2rcos 04-r%)
The ?,,(0) defined by (4.17.5) has the properties that

t0) >0, 1 f t(0) 40 = 1,
7’—1’
and that ¢,(0) > 0, when m — co, uniformly in any closed sub-interval
of (—m, ) which does not include the origin; and the #(r, ) of (4.17.6)
has similar properties. It is on these properties that the applications
of the methods to Fourier series are based, and other choices of a ¢,,(0)
with the same properties lead to valuable methods of summation. Thus

2-m—1T(m 1)V

tnlf) = " g (Feoso)”
has the properties required. Since
" ol m(m—1)
(1+4-cos @)™ = 21 (m')z{%_i_ 0+(—mcos 20+...},
we are led to de la Vallée-Poussin’s definition (VP)
m(m—1)
Ton=lim lat e+ O et }

In terms of s,

t, = 1 Sot 3m s+ 5m(m—1)
mF1° T A 1)m+2) T (mt ) mt 2)(m+3) ¢
and it is easily verified that the method is regular.
In these methods the coefficient of s, is non-negative. There are
other methods, important in the theory of general trigonometrical

series, in which this is not so. The most fundamental is Riemann’s, in
~ which we define Y a,, as

3 2
lim #(h) = lim a,,(sm ””) :

h—0 h—0 nh

1 It is usual to write r for z here, and % for z in the ‘Riemann’ definitions.
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the coefficient of a, is interpreted as 1. It is familiar that this method,
usually called the (R, 2) method, is regular. In this case

i(h, 0) = '”(2" 1) g <om), o @r<O<m

and £(h,0) has the propertles correspondmg to those of (4.17.5) and
(4.17.6).
More generally, summability (R, k), where k is a positive integer, is

defined by .
s1n 7
za,,( o ) s

The method is regular for £ > 1 but not for &t = 1.
Another method, closely connected with the (R, 2) method, but not
equivalent to it, is the (R,) method defined by
2 < sin’nh
=25 S,
where the coefficient of s, in the sum is mterpreted as h. This method
also is regular.

4.18. A general principle. Most of the definitions which we have
considered in the preceding sections may be presented as illustrations
of a general principle.

Let us suppose that F = F(«,B,y,...) is a function of certain para-
meters a, B, v,... which tend to limits g, By, 7,,.--; that 4, B, C,... are
the limit operations « - ay, B = By, ¥ = Y¢»++-; that

PF = ABC..F = lim { lim (lim ..)| F;

a—>axg \ BB

and QF = A’'B'C'...F, where A’, B’, C',... are A, B, C,... in a different
order. We may ask whether
(4.18.1) PF = QF,
and the theorems which assert that this is true under appropriate
conditions include many of the most important in analysis.

We may also look at the equation (4.18.1) from a different point of
view. Suppose, for example, that

F=F(nz)= i @y ™,
[]
that « = », 8 = «, and that 4 and B are the operations n - o0, z — 1.
Then

a,.,

BF = lim 3 a,,2m =
z—>1 0

oM:



90 SPECIAL METHODS OF SUMMATION [Chap. IV

and PF = ABF =lim 3a,, =

n—o 0

A

Mg

if and only if ¥ a,, is convergent. On the other hand,

AF =1lim 3 a,om = 3 a, 2" — f(z),
. 0

n—>o 0
say, whenever this last series is convergent for < 1; and
QF = BAF = limf(x)

is Abel’s limit for the series Y a,,. If PF exists, then QF exists and is
equal to PF, but QF exists in many cases in which PF does not. In
these circumstances we may take QF as the d¢finition of the symbol
PF, and agree to write PF when we mean QF. The utility of such
a fiction is, of course, to be judged by its results.

Again, for the J definition of §4.12, with p,, > 0 for all #,

7= (§ pasu)(§ ),

4 isn->o0, Bisx —o00; BF = s,, ABF = s if and only if s, - s; and
BAF is the limit which we took as our definition. For the ‘moment
constant’ definition of §4.13 (with ¢ = o),

X n n X .
F=J' ( Z'L‘x”‘)dx= ?'—"j ™ dy;
5 gf"m Zfl’mo

Aisn—>o0, Bis X »>0;

so that ABF = s if and only if 3 a, converges to s; and
X [
BAF = lim f a(@) dy = f a(x) dy.
X—>o0 1 Pt

We may sometimes wish to connect the operations 4, B,... by relations

between a, B,.... Suppose, for example, that
LG m \®+Dip
= == 1 —_—
F=Fop = (1= o
Then lim F = fam, lim lim F = Y a,
P 0 n—wo p—ro o
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when the series is convergent; and it is easy to prove that, when n — oo,
F Y e-mirq, whenever the last series is convergent; so that

lini lim F = lim Y e™?a,,

which is Abel’s limit, whenever this limit exists. Thus the ordinary sum
and Abel’s limit correspond to the two repeated limits of F.

On the other hand, we may make » and p tend to infinity together.
For example, if we suppose that n+1 = p, then

o~ m S o o
F= Z (1 _n+1)“’" - nFl

and we obtain the (C, 1) definition. If we suppose that n+1 = kp, we
obtain what is very nearly the (C, k) definition of Ch. V.

NOTES ON CHAPTER IV

§ 4.1. The general definition of & ‘Nérlund mean’ occurs first in Voronoi, Proc.
of the eleventh congress of Russian naturalists and scientists (in Russian), St. Peters-
burg, 1902, 60-1. There is an annotated English translation by Tamarkin, Annals
(2), 33 (1932), 422-8. Voronoi’s article was a short note in a rare publication, and
was unnoticed until Tamarkin called attention to it. A number of special cases
of the definition, such as Cesaro’s, were, of course, already familiar.

Nérlung gave the definition independently in Lunds Universitets Arsskrift (2),
16 (1920), no. 3. He (explicitly) and Voronoi (tacitly) assume that p,/F, — 0, so
that the method is regular.

§ 4.2. Of the two proofs of Theorem 17, the first is Nérlund’s. The second,
depending on Theorem 18, was given independently by Zygmund, Mathesis
Polska, 1 (1926), 75-85 and 119-29, and by Silverman and Tamarkin, MZ, 29
(1928), 161-70. Voronoi states the theorem, and his short indications show that
his proof was on the lines followed by these later authors.

§§ 4.3-4. Theorems 19 and 21 are due to M. Riesz, PLMS (2), 22 (1923),
412-19.

The condition (4.3.7) is also unnecessary when both ¥ p, and 3, g, are con-
vergent, but the question remains open when ¥, p, < 0, 3 gy = 0.

§ 4.5. Theorem 22 is proved, with a different purpose, by Szegé, MZ, 25
(1926), 172-87 (177). Szegd attributes the result to Kaluza. Theorem 23 seems
to be new. I had originally inserted the additional condition p, = o(g,), but
Dr. Bosanquet showed me that this condition is unnecessary.

§§ 4.7-8. Theorem 26, and a generalization for complex b,, were proved by
Jensen, CR, 103 (1886), 980 and 106 (1888), 835. See Pringsheim, Vorlesungen
tiber Zahlen- und Funktionentheorie (Leipzig, 1916), 1, 308-10 and 938.

Theorems of the type of Theorems 25 and 29 are familiar, and have been
generalized by many writers in many directions. For these particular theorems
see Dienes, 394-7; Hardy, PLMS (2), 4 (1906), 247-65; and Perron, M Z, 6 (1920),
286-310. We can prove, a little more generally, that (4.7.4) and (4.7.6) are neces-
sary and sufficient conditions for ¥ a,, = ¢ to imply ¢(zx) - s.

+ See in particular § 5.16.



92 SPECIAL METHODS OF SUMMATION [Chap. IV

Theorems 28 and 30 were proved by Hardy in MM, 39 (1910), 136-9 and
PLMS (2), 8 (1910), 301-20 (318).

§4.9. For A, = n, Stolz, Zeitschrift fir Math. 29 (1884), 127-8: see Stolz und
Gmeiner, Hinleitung in die Funktionentheorie (Leipzig, 1905), 2, 287-8, or Brom-
wich, 252-5. For general A,, Cahen, AEN (3), 11 (1894), 75-164 (86-7): see
Landau, Handbuch, 737-8, or Hardy and Riesz, 3—4.

§ 4.10. For (4.10.1) see Tannery and Molk, 2, 10-13, or Hardy and Wright,
280-2.

Hardy, QJM, 38 (1907), 26988, discusses the series (4.10.2) in detail, and proves
the formula

©0 @
=y 1 { (2n+1)1r£} .
~V g g0 __ — ( A B, ATy entymiflog
€ e e z at4-1 n!+logazr loga Chti
0 —a0

which shows the oscillations when y —> 0 explicitly. The argument here is due
to Maclagan-Wedderburn.

§4.11. The appropriate references to the work of Le Roy, Lindelsf, and
Mittag-Leffler are given in the note on §8.10. The proof of Theorem 32 is
Lindel6f’s.

§ 4.12. Borel gave the general definition (4.12.1) in his earliest work on the
subject: see Borel, 95. The regularity of the B definition was proved first by
Hardy, TCPS, 19 (1902), 297-321 (298-300).

§ 4.13. There is a very clear account of the simpler properties of the Stieltjes
integral in Widder, ch. 1.

Theorem 34 is proved by Good, JLMS, 19 (1944), 141-3, except that he
supposes x absolutely continuous. We have ignored the case

§ <o, x(€+0)—x(—0)=D >0,
which actually leads to a trivial’ method, i.e. one summing convergent series only.
In JLMS, 21 (1946), 110-18, Good proves a further theorem of the same
character.

§ 4.14. Theorem 35 is a corrected version of one stated by Bromwich (1),
301-2. The conditions which he gives are unnecessarily strong in one way and
inadequate in another. The example at the end of the section is his.

Mr. Eggleston observes that we can dispense with condition (iii) if the integral
in (v) is absolutely convergent.

§4.15. The formulae used for the transformation of theta-functions will be
found in Tannery and Molk, 2, 263 (Table XLIII).

§ 4.16. For the general theory of Riesz’s typical means see Hardy and Riesz.

§ 4.17. There are general accounts of the theory of the summation of Fourier
series in Hardy and Rogosinski, ch. 5, and Zygmund, ch. 3.

De la Vallée-Poussin’s method (VP) was defined by him in Bulletin de I’ Acad.
Sc. de Belgique (1908), 193-254, and applied to the summation of the successive
derived series of Fourier series. Gronwall, JM, 147 (1917), 16-35, proved that
any series summable (C,k) is summmable (VP). He also proved that the series
2 2" is summable (VP) to 1/(1—z) in the interior of the outer loop of the limagon

(1 142 = 42,

from which it follows that the VP method is stronger than the aggregate of the
(C, k) methods.
The VP method has very close relations to the (A,2) method. Thus Hardy



Notes] SPECIAL METHODS OF SUMMATION 93

(L.c. under § 2.8) proved that the methods are equivalent for Fourier series; and
Hyslop, PLMS (2), 40 (1936), 449-67, extended the equivalence to all series for
which a, = O(n¥). He also observed that 3 z" is summable (A,2) inside the
curve

(2) ' r=c¢lfl (0] <m),

which includes the curve (1), except for the point z = 1, in its interior, so that
there are series summable (A, 2) but not summable (VP). Later, Kuttner, PLM S
(2), 44 (1938), 92-9, proved that (VP) — (A, 2) in all cases.

Another method with very similar properties has been defined by Obrechkoff,
CR, 182 (1926), 307-9.

The Riemann methods are fundamental in the theory of trigonometrical series.
Thus the regularity of (R, 2) is ‘Riemann’s first lemma’ and that of (Ry) is his
second. A good deal has been written recently about the relations of (R, k) and
(C,1). Thus Verblunsky, PCPS, 26 (1930), 3442, proved the implication

(C,k—38) —» (B, k+1),
and Kuttner, PLMS (2), 38 (1935), 273-83, proved (R,1)-»(C,1+8) and
(R, 2) & (C, 2+3): here 3 is any positive number. Kuttner gives other references.

Marcinkiewicz, JLMS, 10 (1935), 268-72, proves the ‘incomparability’ of
(R,2) and (R,). See also Kuttner, PLMS (2), 40 (1936), 524-40; Hardy and
Rogosinski, PCPS, 43 (1947), 10-25 (where it is shown that the methods are -
incomparable even for Fourier series).

§ 4.18. For all this see Hardy and Chapman, QJM, 42 (1911), 181-215.
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ARITHMETIC MEANS (1)

5.1. Introduction. The simplest method of summation of a
divergent series is the first method of §1.3. There are many important
generalizations of this method, and in this chapter we shall discuss
some of them more systematically. We shall find it convenient to
change our notation, writing 4, instead of s,, and A for the sum of
the series instead of s. Thus X a, = 4 (C, 1) means

limA°+A1+“'+A" — 4.
n+1
We shall also sometimes use A for the series, as well as for its sum,
and say, for example, that ‘4 is summable (C, 1)’ (naturally to sum A4).

5.2, Holder’s means. The most obvious generalization is that first
made by Hélder, who defined a sequence of methods which we shall
call the (H, k) methods.

The (H, 1) method is the same as the (C, 1) method: thus

1—1+1—... =} (H,1).
The method fails for 1—2+43—4+-..., since here the 4, are 1, —1, 2,
.__2, 3,..., and m_ A0+A1+-'-+AnT
" n4+1

is $(n+2)/(n+1) if » is even and 0 if » is odd. We can, however, obtain
a limit by repeating the averaging process; for the first of these values

is $+4-0(1), and so - =H},+H}+...+H}, 1
" - 41 4’
Similarly, three averagings will give } as the sum of 1—3-++6—10+....
We are thus led to define summability (H, k), for any positive integral
k, as follows. We define HE, for k = 0, 1, 2,..., by H} = A4, and
grn _ B+ Hi+ . +H,
" n+1 )
If H: > A when n — oo, then we say that > a, is summable (H,k) to
sum A, and write
(5.2.2) a0+a1+ag+... = A (H, IC).
By summability (H, 0) we mean convergence.

(5.2.1)

+ We write H}, Hi,... rather than HY, H®,... for convenience in printing: the indices
cannot be read as powers. :
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- 5.3. Simple theorems concerning Holder summability. We
shall find that Holder’s definitions, although the most obvious
generalizations of the (C, 1) definition, are for most purposes not the
most convenient. They have, however, certain advantages. In parti-
cular, if we write H%(A4) for the H% formed from the partial sums 4,,
and denote the sequence (H%(4)) by H*(A4), then it is obvious from the
definitions that

HY{HY(A)} = HL{H*(A)} = HiH(A);

and this makes the proofs of some theorems particularly simple.

TreoreM 38. If 3 a,= A (H,k), where k > 0, and k' >k, then
Sa,=AHFE).

This follows at once from the definitions and Cauchy’s theorem of
§1.4.

TuroreM 39. If Y a, = A (H,k), then A, = o(n*) and a, = o(n¥).

For HE = A+-0(1) and so
HY = (- ) HE—nHE_ = o(n), HE?= (n-+1)HE'—nHE = ofn?),
ey A, =H= (n+1)H,—nHL_  =o(n*), a,=A,—A4, ,=o(nk).

This is the ‘limitation theorem’ for the (H, k) method. It shows, for
example, that (as we saw directly in §5.2) the series 1 —2-43—4+-...
cannot be summable (H, 1).

The next theorem reveals some of the inconveniences of the Holder
methods. :

THEOREM 40. The (H, k) method has the properties expressed by
(0‘) z Oan =C 2 Qs (ﬁ) 2 (an+bn) = E a,+ E bm
() aotaitast.. = agt+(@+a,+...),

8) apgt+(a,+as+...) = ag+a,+a,+....

Here each equation is to be interpreted in the sense ‘if the right-hand
side has a value, in the (H, k) sense, then the left-hand side has a value
in the same sense, and the values are equal’. Thus (8) means ‘if
@y+a,+... is summable to A, then a,+a,+-... is summable to 4 —a,’.

The properties («) and (B) are trivial (and true of any linear method).
Ifk=1and b, =a,,,, then B, = 4, ,,—a,and

By+Bi+..+ B, _ n+2(Agt A+t Apy ).
n+1 T 41 n+2 op
and (y) and (8) follow. But the relations between the means of the a,,

and the b, are not simple for higher values of k, and we postpone the
rest of the proof to §5.8.
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5.4. Cesaro means. The Holder means were defined by a process
8> .83 .83 .., where Y is summation from 0 to # and 8 is division
by n+1, operating on 4, 4,,.... The Cesaro means are averages defined
by k& summations followed by a single division.

We write

(6.4.1) A} = A, = ayta,+...+a,,., A= AF14 A1y | Ak-1

and E¥ for the value of A% when ay = 1 and a, = 0 for n > 0, i.e.
when 4, = 1 for all n. If

(5.4.2) Ck(A4) = A%/E% > 4

when n — 0o, then we say that 3 a, is summable (C,k) to sum A4, and
write

(5.4.3) agta,+a,+... =4 (C k).
It is easy to express A% explicitly in terms of 4, or a,. We have

=SS
and
> Akan = (1—a)1 Y Ak-1gn — (1—z)-2 3 Ak-2pm..,
=(1—2)*3 4,2" = (1—2)~*1 Y a,z"

Thus > dkar = Z (n_]tf; l)x” Z 4,z

and

n—v+k—1) , _ ~ [r+k—1
(5.4.4) Ak — 2 ( i )A,, - Z ( o )A,,_,.T
Similarly,

(5.4.5) Ak = Z (”_Z+k)a, = Z (”:k)an-,.

If ay = 1 and the remaining a, are 0, then A% reduces to (n-’i—k)
Hence
(5.4.6) B — (n;c—k) _ (Ic+1)(lc—|;j)...(k+n)'
k
Also (n—li—lc) _ (n+1)(n—{l—d2)...(n+k) _ %,
so that summability (C, k), to sum A, may also be defined by
(5.4.7) kln-kdk > A.

1 Here we use a natural extension of the convention of §3.1. A sum X o, B5_,»
without limits, is extended over those » for which v and n—v are non-negative, i.e.
over 0 < v < 1.
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More generally, we have
S Akgr = (1—z)*-B 3 Adkgn, 3 Akar = (1—x)¥* 3 AK2™;

* and so
(5.4. ¥ vk —k—1\ ,,
( 8) An 2( k’—k'—l An-v’
k' —k
ko —1W k
(5.4.9) 4% = Z (—1) ( i} )A,,_,.

These formulae are essentially the same, since

(7)== (i) |

so that (5.4.9) is (5.4.8) with £ and &’ interchanged; but the forms
given are the most convenient when k&' > k. Since the coefficient in
(56.4.9) is 0 when (k’ and k are integers and) v > k'—%k > 0, it may also
be written as

1k K —k\ o
(5.4.10) ar=> (—1)v( )A:-,.

1 4
v=0

We can use (5.4.10) to define A% for negative k. Thus, if £ = —p
and k&’ = 0, it becomes

azr—a,—(F
In particular :
(5.4.11) A;l = —AAﬂ:-l = An—An-l = a,n;
and it is often convenient to use this convention.

)Au—l+ (12))‘4»—2_"' = (—l)pApAn—p'

5.5. Means of non-integral order. We have supposed so far
(except in the last paragraph) that k is a positive integer, but the
formulae (5.4.4)—(5.4.7) remain significant for non-integral k, and enable
us to give more general definitions.

If k is a negative integer, and we define E% either by (5.4.6), or as
the coefficient of 2 in (1—=x)~*%-1, then E¥ = 0 for n > —k—1, and
definition (5.4.2) fails. We must therefore exclude these values of k£, and
it proves best to suppose that k¥ > —1. We then define A% by (5.4.4) or
(5.4.5), EX by (5.4.6), and summability (C,k) by (5.4.2). The asymp-
totic formula for E¥ is still valid if we interpret k! as I'(k-+1), and we
can use (5.4.7) with this interpretation.

To show the desirability of the restriction £ > —1, we suppose

2 a,z" = (1—2z)?,
where p is positive and non-integral. Then

0. - P@ED-ptn—1) | n?1
" n! T(p)’
4780 "
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so that Y a, is a divergent series of positive terms. But ¥ A¥z" = (1—z)%-1-2,
‘and in particular 3 A;?-1z" = 1. Hence 4,71 = 0 forn > 0, and so (if we do
not restrict k) 3, a, is summable (C, —p—1) to sum 0. It would be very incon-
venient for most purposes to attribute & finite sum to a divergent series of positive
terms.t

We shall therefore suppose generally that k& > —1; but it is sometimes con-
venient to use a special definition of summability (C, —1). We shall say that
> a, is summable (C, —1) to sum A if (i) it converges to 4 and (ii) a, = o(n™1).

If AX = O(n*) then we shall say that 4,, is bounded (C, k), and write

A4, = 0(1) (C,k).
More generally, by
Ay =o(n?) (C,k), A, = O(nh) (C,k),
we shall mean Ak = o(nbk), Ak = O(n't¥).
And we shall use similar notations for other methods of summation: thus
> a, = 0(1) (A) will mean that 3 a,z" = O(1) when z — 1—0.

In what follows we shall sometimes work with a general k¥ and sometimes
restrict & to integral values. Most of the theorems with which we shall be
concerned are true for all £ > —1, but the proofs are often much simpler for
integral k. Thus we have often to use the difference

k k
Aryy = u,— (1)“n+1+ (2)u,.+,~—... .

This is a finite sum when k is integral, but the generalization for non-integral &
is an infinite series, and this often leads to serious complications. In such cases
we shall usually suppose k integral.

5.6. A theorem concerning integral resultants. The sum

(5.6.1) = 2 a,b=3ab, ,=3a,,b
ptv=n

and the integral

(5.6.2) c(x) = fa(t)b(x—t) dt = fa(x—t)b(t) dt

are called the resultants of a,, b, and a(z), b(x). There is one pair of
theorems concerning such resultants which we shall use repeatedly, and
which will be particularly important in Ch. X.

THEOREM 41. Ifr > —1,8 > —1, and

n4-r nr n-+s n®
.0, ~ ~ —Q, b” ~ ~ 0
603 ay~ ("))e~ e ("7)e~ e
then
' ntrts+1\ ,  nreH
(5.6.4) Cn ( el )aﬁ FrTa¥2) aB.
+ Though some definitions do this: thus 142444... = —1 according to the &

definition of §1.3. See also §§ 13.10 and 13.17.
1 Here we use a convention similar to that of § 5.4: the range is 0 < ¢ < =. The
German equivalent of resultant is Faltung.
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THEOREM 42. If r > —1, s > —1; a(x) and b(x) are integrable over
any finite interval of positive x ; and

(5.6.5) a(x) ~ ox', b(x) ~ P
when & — c0; then
(5.6.6) c(x) ~ %aﬁxﬂsﬂ.

In these theorems a, ~ (njr) ..., a(x) ~ ax',... are to be interpreted

as a, = o(n’),..., a(x) = o(z"),... if « or B is 0; we leave the necessary
modifications of the proofs to the reader. There are similar theorems in
which hypotheses and conclusions involve O instead of o.

Theorem 41 may be deduced from Theorem 42 by taking a(z) = a,
and b(zx) = b, for n < z < n-+1, when ¢(n-+1) reduces to c,.

In proving Theorem 42 we may suppose o = = 1. We choose
8 = 8(¢) so that

(5.6.7) 0<d <, O+l << (r+1)e, 81 < (s+1)e,
and also

1 1-3

Pir4+0)I(s+1) [ oy _ne (1 iy )

(5.6.8) y=m_fu(l u)t du < f w(1—u)® dute;
0 3
and write s 1d)
iz 1—-0)z z
(5.6.9) @)=+ [ + [ =a@+ea@)+e@.
] Sz 1~z

When $§ is fixed we can choose x, = (3, €) = x,(e) so that

1-9z (1-8)x
(1—e) f ur(xz—u)® du < cy(x) < (1-4-¢) f u(x—u)® du,
Sz Sz
1-8 ' 1-8
(1—e)zr+s+d f w(l—u)? du < cy(x) < (1-4e)ar+s+l f u(1—u)® du,
d )

for > z,. It follows, after (5.6.8), that

s +1

1-8
m 220 < (1+4¢) J’ w(l—u) du < (1+€)y,
. ,

. Cy()
hinxr.l.s-{-l >

-
(1—e) lf w(l—u) du = (1—e)y—e.
é
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On the other hand, there are numbers H and K such that |a(z)| < Ka*
and |b(z)| < Kz* for x > H. Hence if, as we may suppose, 8z, > H
and (1—38)z, > H, we have

dx H 3z
[ey()] ngsf |a(u)]| du <szf la(u)| du +K2x’f w du
0

x’+3+1

Kx‘f Ia(u)ldu -l—K2 P

It follows from this and (5.6.7) that

[ex(®)]
Lim K2 +l < K2,

x”+3+1

and there is plainly a similar inequality for [cy(z)]|.
Collecting our results we see that

m;(x) < Tm-2®) | fmla@l | rle@) (14 )y +2K?%,

T8+l r+s+l xr+s+1
c(x) (®) _fmla®@)l [es(®) |
Iin_l ZTHsH & = hﬂxrz.;.s.'.l x,1+3+1 —lim xr8+s+1 > (1—e€)y—(14+2K3%)¢,

and so that ¢(x) ~ yar+s+l,

We can, of course, prove Theorem 41 directly in a similar way, the part of
the formula

‘ f u'(x—u)’ du = w ZrHatl

T(r+e+2)
being played by an identity between binomial coefficients, viz.
v+r)(n—v+s) _ (n+r+s+l)
(6.6.10) Z( r 8 “\ r4s1 )

5.7. Simple theorems concerning Cesiaro summability. We
begin by proving the theorems for Cesiro means corresponding to
Theorems 38-40.

TaEOREM 43. If k' >k > —1 and X a, = A (C, k), then
>a,=A4 (CF).
For, if ¥’ == k43, then

S

by (5.4.8); and A% ~ (”‘kH“)A. It follows from Theorem 41 that

¥ nt-k-+-8 _ (n—{-k')
a e () ()
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In particular, taking k = 0, and writing & for k', we have

TrEOREM 44. If k > 0, then the (C, k) method is regular.

Since the coefficients in C%(4) are non-negative when & > 0, it follows
from Theorem 9 that the method is totally regular in the sense of § 3.6.

Tt is instructive to deduce Theorem 43 from Theorem 2. If we express C¥(4)in
terms of Ck(A4) from (5.4.8), with ¥’ = k-8 and v, n—v interchanged, we find that

CK(4) = X ¢, OKA),

where Cnpy = (n_gi_?*l)(v:k)/(":-’iig-s)

for v < nand ¢,, = 0 for » > n. Then c,, > 0, ¢,, = O(n~*1) when v is fixed
and n — o, and 3 ¢, , = 1 by (5.6.10), so that the conditions of Theorem 2 are
satisfied. Also, since c,, > 0, Ck(4) — o implies Cf(4) — co.

Theorem 43 remains true for k = —1, if we use the definition of

summability (C, —1) given in §5.5, but it needs a different proof.
Actually rather more is true.

THEOREM 45. If Y a, converges to 4, and a, = O(n™!), then

>a, =4 (C,—143)
for every positive 8.

We may suppose 4 = 0 and 8§ < 1. We write

148 N (v -1 BRSNS
5.7.1)  A; _Z;( e )an-,,—- S+ 3-8+,

where N = [=n], 0 < w < 1. Then

1 = 1 N3 od
8, = 0= ~1 =0} = 0T _ps1
= ofs)+ 3 o o) = ofZw) = o)
uniformly in w. We can therefore choose = so that
(5.7.2) 18] < end-1,

Next, if u, = (l'+8—1)’ Uy—Uyg = (V+8—2) = 0(|/8—2); and

8—1 3—2
(6.7.3) 8, = upna, y+uy 10yt FUu,a
= Ao(un—"un—l)+A1(un—1'_un—2)+"'+An—N—1(uN+1—uN) +An—N Un

-1
= "3 " o(1)0(m*)+0(1)0(nP-1) = o(nd-1).
v=0
Finally, it follows from (5.7.1)(5.7.3) that n124;1+3 . 0, i.e. that Y a,,
is summable (C, —1-{-3) to sum 0.

THEOREM 46. Ifk > —1 and Y a, = A (C, k), then AX = o(n*) for
k <k.
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This is the ‘limitation theorem’. It is not necessary here to suppose
k' > —1; in particular the result is true when &’ = —1, A¥ = a,

We take 4 = 0, so that A% = o(n*), and write k' — k— 8, so that
3 > 0. Then, after (5.4.8) and (5.4.9),

a3 (N at =3 (- S

say. If 8 is an integer then, by (5.4.10), A¥ is a linear combination of
0+1 of the A% with coefficients whose moduli are all less than
(1+1)% = 23; and so 4¥ = o(n*).

If & is not an integer, then I'(—8)d, ~ n—9-1 and >ld,| <oo. We
then write

tinl
k' __ k
A= (g L )d Ay = S48y

Here
[4n} (3n
IS0 < 31,1145, = gl id, [o(n¥)] = o(n* 3 |d,]) = o(nk),

s n—[§n]
81 < 3 1414k ,] = 0(n-32" 3" k) = 0(ns-?) — ofu),
since k > —1 and 8 > 0; and the theorem follows.

TueorEM 47. The (C,k) method has the properties (x)—(3) of
Theorem 40.

It is only necessary to prove (y) and (8). We have to show that, if
b, = @,;, then either of 3 a, = 4 (C,k) and 3 b, = A—a, (C, k) im-
plies the other. But

D Akar = (1—a) 13 a, 2" = (1—x)*Ya,+x 3 b, z").

Hence A% = E%ay+4 Bk_, for n > 0, and the conclusion follows.

THEOREM 48. If 3 a, is summable (C, k), where k > —1, then
Ay = (a’m_a’m+l)+(am+1—a’m+2)+'-- (C, k)

We may suppose, after Theorem 47, that m = 0. If b, = a,—a,
then B, = ay—a,,; = ¢y—1u,, say, and

. n—v+k—1\ o [(nt+k\ g
B =3 (" o) = (vt

Now ¥ u, is summable (C,k), by Theorem 47, and U%X~! = o(n¥), by
Theorem 46. Herice Bk ~ (n_]’c_k)ao, and Y b, is summable (C, k) to

sum a.
The theorem may be stated in the form if ¥ a,, is summable (C, k) then
a, —~ 0 (C, k), and is also true (and trivial) for k = —1.
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5.8. The equivalence theorem. Our next theorem is distinctly
more difficult.

TrreoreM 49. The (C,k) and (H, k) means are equivalent: if > a,, s
summable (C, k), then it is summable (H, k) to the same sum, and conversely.

Here naturally £ is integral, since we have defined Holder means only
for integral k. We begin by proving :

THEOREM 50. If

(6.8.1) m. = 8g+81+ .8,
) " n+1 ?
then the hypotheses
(5.8.2) s, ¢ (C,k), m, > 8 (C,k—1)

are equivalent.
We define s as we defined A% in § 5.4, so that

(5.8.3) i = ("1 F)oren
and mk, C¥%(m) similarly. We have, by partial summation,
n n=1
2 o, = (ntphn— 3wy = (ntp+1)un—i,
for any p and n. Hence, since s, = (n+1)m,,, we derive successively

=23 (+lm, = (ntDmi—ml, &2 = (n+3mi—2m3,...
0

(5.8.4) sk = (n4-k)ymE—1—(k—1)mk;
and from (5.8.3) and (5.8.4) it follows that
(5.8.5) C¥(s) = kCE~Y(m)— (k—1)C%(m).

First, C¥~1(m) — s implies C%(m) — s, and so C%(s) - s.
Secondly, suppose that Ck(s) - s. Since mf—! = mk—mk_;, (5.8.4) is

sk = (n+1)mi—(n+-k)mk_,

or

(5.8.6) Ck(s) = (n+1)C%(m)—nCE_y(m).
From this it follows that

(5.8.7) (n+1)Ck(m) = Ck(s)-+C¥s)+-...+C¥(s),

and therefore that Ck(m) > s. Finally, (5.8.5) shows that C%¥~1(m) — s.
This proves Theorem 50: and it is easy to deduce Theorem 49. For,
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applying Theorem 50 k times in succession, we see that the hypotheses
CKA) >4, C:YHYA)}->A, .., CMH*YA)}->A, HYA)->A
are all equivalent.

It is plain that Theorem 40 (§5.3), the proof of which we postponed,
now follows from Theorems 47 and 49.

5.9. Mercer’s theorem and Schur’s proof of the equivalence
theorem. Schur’s proof of Theorem 49 is similar in principle, but
makes the relations between the various matrices involved more explicit.
It depends on an important theorem of Mercer.

THEOREM 51. Ifa > 0and
(5.9.1) t, = as,+(1—a)ym, > s,
then s, — s.

We define m_, as 0. Then s, = (n+1)m,—nm,_, forn =0, 1, 2,...,
and
(5.9.2) t, = (an+1)m,—anm,_; (n=0,1,2,..).

We choose ¢, ¢;, s,--. 80 as to satisfy
%=1, gy—og; =0, (a+1)g;—20g; =0, (2a+1)g3—3ag; =0,

Then
_latl 2041 (n—1)a+1_ T(n+P) np-1

=% T 3x " ma  DETm+) TR’
where B = 1/o; and »
(6.9.3) ottt ~ @+ "~ (an—+1)gy,.

Multiplying the equations (5.9.2) by ¢, ¢;,..., adding, and using (5.9.3)

and Theorem 12, we obtain

_ Qolot ittt +antn
(an+1)g,

and it follows from (5.9.1) and (5.9.4) that s, >s. This proves

Theorem 51.

We use the following notation. If the transformations T and U are
the same, i.e. have the same matrices, we write T =U. If T and U -
have coefficients c,, , and d,, ,, then «T4BU is the transformation with
coefficients ac,, ,+Bdy,. If t = T(s), as in §3.1, and » = U(¢), then we

. write u = U{T(s)} = UT(s).
If UT = TU, we say that T and U are commutable. We write T? for
TT, T2 for TT?, and so on.

(5.9.4) m,

> 8,
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If T has an inverse, i.e. a transformation S such that ¢ = T(s)
implies s = S(¢) and conversely, we write T-! for S. If E is the identity,
i.e. the transformation ¢, = s,,, then T-'T = TT-! = E. A triangular
transformation in which c,,,, 5 0 for all m has an inverse.

We write H® and C® for the (H, k) and (C, k) transformations, and
H, Cfor H®, C®, Thus H = Cand H® = H*. If (m+1)¢,, = sy+...+8p
then s, = (m+41),,—mt,,_,. Thus the matrices of H and H-* are

1000 . . 1 0 00 .

0 0 -1 2 00
H-|1? .. )

H %g;o.."H’ 0 —2 3 0

Since 471 = A7 —A,_, and (”:L’) Cr(4) = Az, we have

105 Y(4) = (n+1)CR(4)—nC; 4 (4)
— {(n+1)C(A) —nCh_(A)}+(r—1)CHA) ;
and so rCr-D = H-1CN-(r—1)C",
(6.9.5) HCr-D = pCO+-(1—p)HC® = SNCO,
where p = 1/r and S® is the transformation
S® = pE+(1—p)H.

Hence H¥—+1C¢-D = Hk-rSOCY for 0 <r < k. But H*" is com-
mutable with H and with E, and so with S®; and therefore

(5.9.6)  Hr-r+10e-D = SOHF~CY (0 < r < k).
We define T® by
(5.9.7) T® = HxC0 (0 < r < k),

s0 that T® = C® and T® = H*. Then (5.9.6) is T¢-D = SOT®; and
therefore

bl

_ 1 I\ O+ 48D
(r—1) _ Z§(r) —= n
(5.9.8) - = rt,, +(1 r) i

&7 being the result of operating on 4, with T®). Hence, by Theorem 51,
the hypotheses ¢’ > 4 and {1 - A are equivalent. That is to say,
T® and T¢-D are equivalent, and therefore T® and T® are equivalent.

It will be observed that here we use the transformations C®), HC®*-1), H2C*-2),
H¥, whereas in § 5.8 we used C®*J, C*-UH, Ck-2H3,..., H*., Actually H? is com-
mutable with C@ for all p and ¢, so that H'C*—" = C*—nH', and the two sets
of transformations are the same. This is not difficult to prove directly, but the
full reason for it will not appear until §§ 11.3—4.
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5.10. Other proofs of Mercer’s theorem. From the many other proofs of
Theorem 51 we select two. .

(A) Knopp's proof. One proof, due to Knopp, has the merit of avoiding all
algebraical calculations. We may suppose without loss of generality that s, is
real; and it is sufficient to show that s, tends to a limit.

Given n > 0, we distinguish the two cases (a) 8, < m,, (b) s, > m,. Since
8, = (n+1ym,—nm,_ 4, s, < m, implies m, ; > m, (and s, > m,, s, = m,
imply m,,_; < m, and m,_, = m, respectively).

(i) Suppose that
(5.10.1) limm, = co.

Then, given G, there is a p for which m, > Q. If n = p is in case (a), then
my_, > my, > G. If also p—1isin case (a), then m, , > m,_; > G; and so on.
If all of p,p—1,...,2 are in case (@), then m; > @, and this is impossible for
large G. Hence one of these numbers must be in case (b), and there is a g such
that s; > m, > G. But then

ty = asg+(l—a)mg = my+a(sg—my) > G,

a contradiction for large G, since ¢, is bounded. Hence limm, is finite; and
similarly limm,, is finite, so that m, is bounded.
(ii) Suppose that (m, is bounded and)

(5.10.2) I = limm, < limm, = L.

Then there are numbers » and H such that » < H and each of m,, < h, m, > H
is true for an infinity of n. Suppose, for example, that

(5.10.3) m, < h, m, > H, q> p.

If g is in case (a) then, as before, m, ; > my; > H. If all of ¢,q—1,...,p+1 are
in case (a), then m, > H > b, in contradiction to (5.10.3). It follows that there
is an r, greater than p, for which s, > m, > H and

(5.10.4) t, = asp+(1—a)ym, = m,+ofs,—m,) > H.

And, since p may be as large as we please, (5.10.4) is true for an infinity of r.
Similarly ¢, < h for an infinity of r; and this and (5.10.4) together contradict
the hypothesis that ¢, tends to a limit. It follows that (5.10.2) is false, and that
m, tends to a limit; and therefore, by (5.9.1), 8, tends to a limit.
(B) Hardy's proof. Another proof, by Hardy, gives rather more, in particular
the extension of the theorem to complex «. It is convenient to begin by a trivial
transformation of the theorem.

We write Upyy = a(8p+8;+...F8p), a = (x—1)/e.
Then (5.9.1), with n—1 for n, becomes
(6.10.5) Up—Up_1—aUL [N —> 8,

and positive values of « correspond to values of @ less than 1. Mercer’s theorem
asserts that «,—u,_, and u,/n then tend to 8/(1—a). We prove, more generally,

THEOREM 52. If a = a+if and o # 1, then (5.10.5) implies

T(n+1)  sn
Uy = C Im +l—__-‘;+o(n).

If « < 1, then C = 0.
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We may suppose that s = 0. We write

T'(n+1)
Uy = Tnti= a)¢n _fu?Sn

Then f, ~ n® and f,—f,_, = af,/n. Hence
f»—l(¢n_¢n.-1) =fa ¢n"‘fu—1 ¢n—1—(fa_fn—1)¢n
= Up—U, ;—auUy/n = o(l),
and 80 ¢, —¢,_; = o(n~2). If x < 1 then

$n = bot i (Bm—bms) = dot i o(m~=) = o{ni—=)

“and u, = O(n*)o(n1~=) = o(n). If a« > 1 then the series 2(95,,, ¢m_1) is con-
vergent, ¢,, tends to a limit C,

$n = C— ? (Pmi1—dm) = C+ ?o(m-«) = C+o(nt—=),

and u, = C’f,,+o(n)

There are theorems of the same kind concemmg ‘asymptotic dxfferentml
equations’, and one particularly simple theorem which we shall use later, viz

THEOREM 53. If f(x)+f/(x) — O when x — oo, then f(x) — 0.

This may be proved directly as follows. If f’ is of fixed sign from a certain z
onwards, then f is monotonic. Thus f tends to a (possibly infinite) limit I, and
J'— —I; and these conclusions are contradictory unless I = 0. If, on the other
hand, f* assumes values of either sign for values of z beyond all limit, then f — 0
when & — oo through the values which make f 8 maximum or minimum, and
therefore when # — c0 in any manner.

5.11. Infinite limits. It is natural to ask whether the equivalence theorem
extends to the case in which the limits are infinite. Here the answer is negative.

TrEOoREM 54. If 8, — 0 (C,k) then 8, — oo (H, k). The converse is false when
k> 1.

Here again k is integral. It follows from (5.9.5) that
H = CW, H2 = HCM = }CO+}HC®),

H3 = JHC® - }H2C® = 10® 4+ }HC® + JHC®),
and generally ' .

k-1
(5.11.1) HE =3 a , HPCH),
=0
where a;, , > 0. Hence
k—1
(5.11.2) HEs) = 3 o, HYC®(s)}.
=0
Also ?
(5.11.3) HZ{O®(s)} = 3 by, CP(s),
a=0
where &, ,, > 0; and it follows from (5.11.2) g:nd (5.11.3) that
(5.11.4) HE(s) = §_ BnaOP(0),
where be,ng = z e phnpq > 0.

Consideration of the case in which s, = 1 for all n shows that 3 by »q = 1.
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The equivalence theorem shows that the transformation (5.11.4) is regular,

and, since by ,, > 0, it satisfies the conditions of Theorem 9. Hence

(5.11.5) lim C{¥(s) < lim H¥(s) < Iim HX(s) < lim C¥(s),

and s, —> o0 (C, k) implies s, — oo (H, k). This proves the positive half of Theorem
54.

To prove the negative half, suppose that & > 1 and Cf)(s) = 2m, O%) ,(s) = 0.
These equations define a sequence (s,) for which

lim Off)(s) = 0,  lim OfH(s) = oo,
and H,{C®)(s)}— co0. By (5.11.2), HX(s) > a;, H,{C®)(s)} — co. Thus s, — o (H, k),
but ¢, — 0 (C, k) is false.

5.12. Cesiro and Abel summability. Theorem 43 shows that
the strength of the (C, k) methods increases with k. Our next theorems
show that the A method is stronger than any of them.

THEOREM 55. If > a, = A (C,k), for some k, then 3, a, = A (A).

THEOREM 56. There are series summable (A) but not summable (C, k)
for any k.

We need a lemma, important in itself.

Taeorem 57. If d, >0, Xd,=c0, >d,a" is convergent for
0< z<]1,andc, ~ Ad,, where A 5~ 0, then

Clxz)=3c, x“NAD(x) =AYyd,z"
when x — 1.

We may suppose c, real and 4 = 1. Then c,/d, lies between 1—e

and 1-+¢€ for n > N = N(¢). Hence, on the one hand,

Ow) = 3 eazrt 3 caan < (1+0DE+ 3 loule™
and on the other
C@) > 1—9D@)— 3 duan— 3 leaan
Since
lim D(z) > lim z d,z" = Dy
for every N, and so D(z) - oo, it follows that

Cl) C(=)
1 =
hniD(x) +¢, hmD( ) = 1—e¢,
and therefore that C(x) ~ D(z).
Theorem 55 is a corollary. We may suppose 4 # 0. Then, as in

§5.4, Ak n Ak n
fio = S = S~ S

and A% ~ AEE, so that f(x) > 4.
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To prove Theorem 56, we define a,, by
(5.12.1) flx) = i+ = 3 g an.

Then f(x) is regular except for x = — 1, so that the series is convergent
for [#] < 1; and f(z) > et when 2 —> 1. On the other hand, a, is not
O(n¥*) for any k; for this would involve

fl@) = O(Z n*[z|") = O{(1—|x|)*1},
uniformly in the circle |z] <1, whereas f(z) tends to infinity like
¢¥1~12) when z - —1 by real values. It follows from Theorem 46 that
> a, is not summable (C, k) for any k.

A more elegﬁnt example of a series with the properties desired is 3 (— 1)%ec¥n,
where ¢ > 0. The a, of (5.12.1) is roughly of this type, but the proof of this is
more troublesome.

5.13. Cesaro means as Norlund means. The (C, k) means are
the (N, p,) means with

TRy B vy S

The (H, k) means are not Norlund means (except when k¥ = 1). It is

interesting to find examples of Nérlund means (a) stronger than any

Cesaro mean and (b) weaker than any Cesidro mean of positive order.
(a) We suppose k integral, and take

n+k—1
p,.=( -,f_l ) @ = €',

when P, = O(n*), @, ~ 2Vne'*; and define «, by
9(=)
Kk(x) = D 12" = 2 = (1—z)*g(x),
@) =3z = L2 = (1—zg(at
so that Ky = (—1)kAkeVin-k) ~, 2~kp~tkevn
forn = k. We have to show that summability (N, p,,) implies summability -
(N, ¢,), and we use Theorem 19. The second condition of the theorem is
plainly satisfied, and it is enough to prove that
2 eYn-m(n—m)-tkmk = O(vVne'n),
the summation extending over 0 <m << #n. The terms in which
m > in give O(eV*) with a ¢ < 1. Finally,
m

Vn—A(n—m) > SV’

ev(n—m) < e-/ne—imldn’

1 We use « for the k of § 4.3, since k is required otherwise,
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and the remaining terms give
O(e'rn—tk Y mke-tmivn) — O{ednn—ik(l_e—in'*)—k—l}
= Ofe'mn-Hentle+D} — O(Vne'n).
(b) The means for which p,, = (n-+1)~! have been called by M. Riesz
‘harmonic’ means. We take ¢, = (n—li_fl 1

(N: q,;) is (C’ k) Then 10,2; < Pn-1Pa+1s and pn/pn—l < qn/qn-l if
(n+1)(n+k—1) > n2?, ie. if » > (1—k)/k. Thus the conditions of
Theorem 23 are satisfied, and summability (N, p,) implies summability
(C, k) for every positive k.

), where £k < 1, so that

5.14. Integrals. The definitions for integrals corresponding to those
of §§5.2-5 are as follows. We take the lower limit of integration to
be 0, and suppose, to avoid minor complications, that a(x) is bounded
in every finite interval (0, X).}

We write
z

Hz) = Ax) = f a) &,  H@) =1 J' 1) dt.
[}
If H¥(z) - A when z - 0, we write
A@) >4 @I, [a@)ds=4 (Hk)]
and say that the integral is summable (H, k) to 4. If

Ayfz) = Ax),  Au@) = [ A0 &,

and kla=*4,(x) > A4,
then we write
A(x) - A4 (C,k), f a(x)dz = 4 (C, k),

and say that the integral is summable (C, k) to 4.
These definitions are for integral k. If k is integral, then

(5.141) A z) = f A, () dt = f (@—1)A,_y(¢) dt...

x

- 1)' f @—tf-1A) dt = 2 J' (@—t)a(t) dt,
o

by repeated partial integration; and these formulae suggest the exten-

t See the note at the end of the chapter.
1 Integrals without limits being as usual over (0, ).
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sion of the definitions to non-integral k. We say that the integral
f a(x) dx is summable (C, k), where & > 0, to sum A4, if

(5.14.2)

P(I;;k;) Ay) = 5 f (@—t)e-14(t) dt —= f (l—g)ka(t) di > 4.
0 [1]

The second form, with a(t), may be used for all £ > —1.
If 4, (x) is defined by (5.14.2), and k > —1,1 > 0, then

z z :
1 _ _ 1 ‘ e B
YD) f (x—t)-14,(t) dt = NS0 f (x—t)-1dt ! (t—w)*a(u) du
o ’ 0

__ 1 [ (¢ wpt(e—tyr
= I‘(lc—i—l)I‘(l)!a(u) duj(t u)k(x—t)-1 dt

S SR

—I‘(k+l+1)f(x u)*ta(u) du.
0

Thus

(5.14.3) A, () = I":_l) J' (x—ty-14,¢8) dt (k> —1,1 > 0).
[

This is the analogue of (5.4.8).

5.15. Theorems concerning summable integrals. There are
theorems for integrals corresponding to most of those of §§5.3-11, and
* the proofs are usually a little simpler than those of the theorems for
series. There is, however, one important difference. If > a, is con-
vergent then a, - 0, whereas there is no corresponding theorem for
integrals. Thus there is no limitation theorem such as Theorem 46,
and this destroys the analogy in some ways. !

We summarize the main results, leaving the proofs, for the most part,
to the reader, and emphasizing only what points of difference there are.

If f a(x) dz is summable (C, k), where &k > —1, then it is summable
(C,k’) for k' > k. The proof depends on (5.14.3), and is otherwise
similar to that of Theorem 43.

The methods have the properties analogous to those of Theorem 40.
In particular .

o

(5.15.1) j a(z) dz = fa(x) dz + fa(x) dz (C,k)

0
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if the last integral is defined as .[ a(c+y) dy and either side of the
equation has a meaning.

The (H, k) and (C, k) definitions are equivalent. This is most easily
proved by a modification of the proof of § 5.8. We have to show that, if
8(x) is defined like 4, (z) in §5.14, and

Cz,8) = klats(x), mz) =1 f s(t) dt,
' 0

then the assertions
(5.15.2) Ck(z,s) - s, C*Yzx,m) > s
are equivalent. Now g, (z) = am(x), sy(x) = xm,(x) —my(),..., where
my(z) = J' mt)dt, my(x) = f my(t) db,..
0

and generally

(5.15.3) 84(x) = wmy_y(2)— (k—1)my(z),
by repeated partial integration; and this is equivalent to
(5.15.4) Ck(z, s) = kC* Yz, m)—(k—1)C¥(x, m).

From this it follows that the second of (5.15.2) implies the first.
Next, (5.15.3) gives /

x) d (mk(x))’ my() f f’;_(kt_) dt,

% dx\ k! gk T

0

and so Ck(z,m) = i f Ck(t, s) dt.
0

Hence C*(z,s) —» s implies C¥(z, m) — s, and so, after (5.15.4),
Ck-Y(z, m) - s.

This proves the equivalence of the two assertions (5.15.2), and the proof
of the main theorem then follows as in § 5.8.

5.16. Riesz’s arithmetic means. The formulae (5.14.2) suggest a
modification of the definitions of §§5.4-5. If k is integral then, in the
notation of § 5.4,

e an R\ < (n—v+k
C,.<A>—( ' ) Zo r e,

e s

y=
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If here we replace all of n+1, n+2,..., n+k by n, we obtain a new mean

(5.16.1) RYA) = Z (1 _i)ka,

more strictly analogous to the integral mean (5.14.2); and this led
M. Riesz to suggest '

(5.16.2) Rk(4) > 4

as a new definition. We may plainly allow £ to have any positive value,
but negative & are inadmissible.

Riesz found, however, that this definition did not lead to satisfactory
results; the means R¥(4) have, for the larger values of k, properties
quite unlike those of the corresponding Cesaro means. He was therefore
led to modify the definition by the introduction of a continuous para-
meter w. The means thus obtained are the typical means of § 4.16, with

A‘n = n.
We write
% k
(5.16.3) R¥(w) = R¥(w,d4) = Tw(z? '~ 2 (1—5) %

y<w
where &k > 0. If R¥(w) > A when w — 00, then we say that > a, is
summable (R, n, k) to sum A. We then find that summability (R, =, k)
is equivalent to summability (C, k). We confine our attention to integral
k, the proof for general k being rather troublesome.

THEOREM 58. If k is integral, and Y a, is summable (C, k), then it is
summable (R,n, k) to the same sum; and conversely.

We may suppose the sum zero. We have then to show that the
hypotheses

(56.16.4) Ak = o(n¥), (5.16.5) T*(w) = o(wk)
are equivalent. We suppose that w = n4-6, where n is an integer and

0<oi<l. .
(i) Assume (5.16.4). Since T%(w) = 3 (n—v-+-6)*a,, we have

S T¥w)a" = 3 (n+-0)kz™ 3 a,a™ = g(z,0) 3, Akan,
where
d\k af .
o(0,6) = (1—2)+1 3 (w0 = (1—apsa(a 2] T = S o0,
and the coefficients ¢;(0) are polynomials in 6 of degree k. Hence
k

© k ©
S THw)m = 3 o0 3 dkan,  THw) = 3 c,(0)4k.,,
n=0 j=0 n=0 =0

y=

and (5.16.5) follows, with the necessary uniformity in 6.
4780 1



114 ARITHMETIC MEANS (1) [Chap. V

(ii) Assume (5.16.5), and suppose that 0 <0, < 6,... <6, < 1.
Then we can determine g, ¢,,..., g 80 that
k k
" = 3 amtor
k =0
idemntically. For, if we equate the coefficients of different powers of =,
we obtain a system of equations Y g, = O, where j =0, 1,..., k, in
the g,, and the determinant of the coefficients is
161 = T (6—8,) # 0.
>m
We then have
< [n—v+Ek k
ax=> (" e, = 30 m0r0),

v=0
and (5.16.4) follows.

We add a few remarks to show the inadequacy of the definition (5.16.2).
When k=1,

1
OMd) = o D (n+1-v)a, = Biy(d),

so that the definition is equivalent to Cesaro’s; but there is no such equivalence
for larger k. Suppose, for example, that ¥ = 2. Then

S (nF1)RL, (A" = 3 (n+1)%0 3 agat = (Tl% > aaen
If we define a,, by
Tagat = (1—z)(1+2)7? = 3 (—1)%(n+1)%",
then a,, is of order n?, and so ) a, is not summable (C, 2); but
3 (n+1)2RE, (A)2" = (1—2)~2 = 14227+ 3at+...

and R3(4) = O(n1) = o(1).

When & = 3, (5.16.2) does not imply the summability (C, k) of the series for
any k, or even its summability (A). For '

2 (n+1)'2" = (1—z) %1+ 4w +a?)

has a zero at # = —2+4,/3 = «, inside the unit circle. If we define a, by
S @, 2® = (1—2)/(a—x), then R3(4) = o(1), but ¥ a,z" is convergent only
for |z| <a < 1.

It is instructive to consider this question in the light of §§ 4.3-4. The (C,2)
means are the (N, g,) means with g(z) = Y ¢,2" = (1—=z)"%; and

T¥n+1) = (n+1)°R% ,(4)

is the coefficient of z® in

2 (n+1ya* Y a,a" = I paat 3 4,2%
where Pp= (n+1p3—n? = 2n+1, p(T) = 3 ppa® = (lli-:)!'

so that R} ,,(4) is the (N, p,) mean for this p,. In the notation of § 4.3 we have
k(x) = (14+2)! = 1—z+2?—..., so that I |k,| = 0. The equivalence is
destroyed by the zero of p(z) at # = —1, and it naturally fails more completely
when p(z) has a zero with |r| < 1.
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5.17. Uniformly distributed sequerices. We end this chapter by
a short excursion into a different field.

We suppose that 0 < s, << 1 for every n, and denote the interval
0<a<2z<b<1byl Ifn;isthe number of s, s;,..., s, which fall
in I, and n; ~ nl when n—oo,} for every I, then we say that the
sequence (s, ) is uniformly distributed in (0, 1).

We denote the characteristic function of I, 1 in I and 0 elsewhere,
by I(z). If f(x) = I(x) then

S(s0)+Sf(s1)+ .- +S(s) _ , ff(x) dow = 1.}
n+1 n+1
Thus the assertion of uniform distribution is equivalent to the assertion
that
(5.17.1) f(s,) > f flz) dz (C,1)

for every f(x) = I(x). We now prove

THEOREM 59. If (s,) 18 uniformly distributed, then (5.17.1) is true for
every Riemann integrable f(x).

We may plainly suppose f real. If (s,) is uniformly distributed, then
(5.17.1) is true for f(z) = I(z). It follows by multiplication and
addition that it is true for any finite step-function. If fis Riemann
integrable, then there are finite step-functions f, and f, such that
Hi<fF</f,and

o<jf2dx—jf1dx<e;

and ,ﬁgmsm)» [#e ,ﬁifz(sm)» [ e
Also

lim Zf( w) > lim zfxs,,.) = [fide> [ sy ar—,
lim zf( w) <lim——s ifz(sm) = [fude < ff(x) iz +e;
and therefore hmn_—l-l z J(s,) = f f(z) dz,

which proves the theorem.

t We use the same symbol for an interval and its length. In what follows an integral
without limits shown is over (0, 1).
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We can find another criterion for uniform distribution as follows. If
flz) = e¥mie = e(kx),
where £ is a positive integer, then _[ f(x) dx = 0. It follows that
(5.17.2) S e(ks,) = o(n) (k=1,2,3,.),
0
if (s,) is uniformly distributed, or, what is the same thing, that

(5.17.3) 3 T(s,) = o(n),
0

where T'(x) is any trigonometrical polynomial without constant term.
Thus (5.17.2) or (5.17.3) is a necessary condition for the uniform distri-
bution of (s,). We now show that the condition is also sufficient.

THEOREM 60. If (5.17.2) is true for every positive integral k, then (s,)
18 uniformly distributed.

First, (5.17.3) is true for every 7'(z). If
k
T(x) = §ay+T(x) = $ay+ > (a,cos 2lmz+b;sin 2nzx)
=1

is any trigonometrical polynomial, then plainly
l n
. | Z 7(8,,) = $a,+ f T(z) dx = f 7(x) dz,
m=0

and (5.17.1) is true for f(x) = ().

Next, if f(x) is any real continuous function, there is a r such that
|f—7| <ein (0,1). If 7, = 7—e¢, 7y = 7-+¢, then 7, <f <7, and
f T, dx, f 7odx differ by 2. It then follows, as in the proof of
Theorem 59, that (5.17.1) is true for f. Finally, if f(x) = I(z), then
there are continuous functions f; and f, such that f, << f <f, and
f fide, f fa dz differ by less than ¢; and a repetition of the argument
shows that (5.17.1) is true also for this f. Hence (s,) is uniformly
distributed.

Perhaps the most interesting case is that in which

s, = na—[na] = {na},
where « is irrational. If « is a rational p/g, then s, repeats the cycle of
values 0, 1/g, 2/g,..., (—1)/g, in some order, indefinitely. It is there-
fore natural to expect (s,) to be uniformly distributed when « is
irrational. In this case
1 —e2k(n+hmrai

?e(ksm) — § ethmmai — LT 0y o),

] —e2kmat

for k = 1,2,3,.... Thus (s,) is uniformly distributed, and we have
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THEOREM 61. If « is irrational, then the sequence ({na}) is uniformly
distributed in (0, 1).

5.18. The uniform distribution of {n%:}. There are important
generalizations of Theorem 61. In particular, Weyl has shown that
{P(n)} is uniformly distributed whenever P(n) is a polynomial

NP +ay P14 o,

with at least one irrational coefficient. The proof is a good deal more
difficult, and we confine ourselves to a special case, which is sufficient
to illustrate Weyl’s main idea.

THEOREM 62. If « is irrational, then the sequence ({n%}) is uniformly
distributed in (0, 1).

We have to prove (5.17.2), with s,, = {m2a}, and, since ka is irrational
when « is irrational, it is sufficient to prove that

S, = i em'mai — o(p).

Now |8, |2 = i i 2Ag*—pYmai — z EP e2il+2p)mai
P=0 ¢=0

P=0j=-p
on writing p+j for q. Inverting the order of summation, we find

l S |2 — z ez,'mi z e4pmm+ z e2j’1ron i edpjmai — Tl +T2

=-n p=-j

j
>5
and w; satisfies both the inequalities

o<w n—j+1 < n+1, w; < |eosec 2jmal.

] — eMn—i+Djmai n
z w,

=0

n—j
Here 1Ty < i | > efpimai| =
j=o0lp=0

_— e4jmn

Now |sin 2jma| > 2)\i, where A; is the distance of 2jo from the nearest
integer, i.e. of {2ja} from the nearer of 0 and 1. Since the numbers {2ja}
are uniformly distributed, the number of them with j < » and A; < »,
and so lying in one of the intervals (0, n) or (1—7, 1), is less than 3xn,
for sufficiently large n ; and then w; < (27)- for more than n+1—3yn
of the j, while w; < n+1 for the remainder. Thus
im T < lim {n—l—l 3nn(n+l),

n—o N2 s n—wo 27)%2 + n2

3

and T) = o(n?). Similarly T}, = o(n?); and so S, = o(n), which proves
the theorem.
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NOTES ON CHAPTER V

§§ 5.2-3. See § 1.3. The papers of Frobenius and Hélder were published in J M,
89 (1880), 262—4, and MA, 20 (1882), 535-49; and that of Cesaro in BSM (2),
14 (1890), 114-20. Cesaro is concerned primarily with the multiplication of series:
see Ch. X.

§ 5.5. The definitions for general k were given independently by Knopp,
Sitzungsberichte d. Berliner Math. Ges., 7 (1907), 1-12 [printed in Archiv d. Math.
(3), 12 (1907)], and by Chapman, PLMS (2), 9 (1911), 369—409.

There are general accounts of the theory in the books of Borel, Dienes, Hobson
(2, ch. 1), and Knopp, and in the monographs of Andersen, Bohr, and Kogbetliantz.
There is also a very clear account of the fundamental theorems in a lecture by
Andersen (Cesdro’s Summabilitetsmetode, Copenhagen, 1919). The monograph of
Kogbetliantz is the most complete, but is a summary of results without proofs.

It is sometimes difficult to assign particular theerems to their discoverers, since
most of them have been found by a process of gradual generalization; and we do
not attempt to do so systematically, though we give the most obvious references.

§ 5.6. The substance of the theorems of this section is Cesaro’s. More general
theorems of the same character will be found in Knopp, RP, 32 (1911), 95-110.

§ 5.7. Theorems 43 and 46, in their general form, are due to Chapman and
Knopp. Theorem 45 was proved by Hardy and Littlewood, PLMS (2), 11
(1912), 411-78 (462, Theorem 37).

§ 5.8. Knopp, Grenzwerte von Reihen bet der Anndherung an die Konvergenzgrenze
(Dissertation, Berlin, 1907), proved the implication (H, k) —» (C, k), and Schnee,
MA, 67 (1909), 110-25, the converse implication. The proof here is due to Ander-
sen, MZ, 28 (1928), 356-9, and is a simplification of one given earlier by Knopp,
ibid. 19 (1924), 97-113. See also Knopp, 481.

Theorem 49 is a special case of the theorem that the three hypotheses

(@) OHCBYA)}— A, (b)) CP{CA)}—> A4, (o) Cp*P(4)—~>4

are equivalent. This has been proved in various ways by Andersen, Faber,
Hausdorff, and Kogbetliantz: references will be found in Andersen’s paper. It
should be noted that the equivalence of (c) with (a) and (b) lies deeper than that
of (a) with (b), the transformations C(®C®) and C®)C(=) being identical with one
another, but not with Ct=+8),

The identity of C(*C® and C®)C® is a corollary of Hausdorff’s work (Ch. XTI),
and may also be proved independently. It is easily verified that

O{CB(A)} = 3 e pAp

where c,, , i3 0 for p > n and

P(n+1(a+1) Tp+HI(B+1) T(n—p+a) F( p+1, —ntp, B )

C(nta+l) T(p+p+1) Tn—p+)T()* *\p4+p+1, —n4p—a+1

for p < n, the argument of the hypergeometric series being 1; and it follows
from Bailey, 21, formula (1), that this is symmetrical in « and S.

§ 5.9. Mercer, PLMS (2), 5 (1906), 206-24; Schur, MA, 74 (1913), 447-58.
Schur’s proof is also given in Landau, Ergebnisse, 43-51.

§5.10. Knopp, MA, 74 (1913), 459-61; Hardy, QJM, 43 (1912), 143-50.
Hardy proves a number of extensions of Theorems 52 and 63. The simple proof
of Theorem 53 given here is due to Hobson.
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Pitt [PCPS, 34 (1938), 510-20] and Rogosinski [ibid. 38 (1942), 166-92 and
344-63] have proved much more general theorems by deeper methods. These
depend on the use of Fourier and Mellin transforms in the manner of Wiener
(Ch. XII).

§ 5.11. Theorem 54 is due to Schur, l.c. under § 5.9.

It follows from the analysis here and Theorem 11 that the (H, k) kernel of (s,)
is included in the (C, k) kernel. Knopp, l.c. under § 3.7, gives a simple example of
a real (s,) whose (H, 2) and (C, 2) kernels are the intervals (}, {) and (0, 1).

Bosanquet, JLMS, 21 (1946), 11-15, has shown that s, — oo (H, 2) does not
imply 8, —> o (C, k) for any k, or 8, — oo (A), even when ¥ a,z™ is convergent
for x| < 1.

Basu, PLMS (2), 50 (1948), 447—62, has proved that Theorem 54 remains true
for general k > 1 and for —1 < k < 0, but that the relations are inverted when
O0<k<l

§ 5.12. Theorem 57 is due to Appell, Archiv d. Math. 64 (1879), 387-92. The
example used to prove Theorem 56 is Landau’s (l.c. under § 5.9, 51).

§ 5.13. For the ‘harmonic’ means see M. Riesz, l.c. under § 4.3.

§§ 5.14-15. It is difficult to give useful references for theorems concerning
summable integrals, since they have been often dismissed as ‘obvious analogues’
of theorems about series. The equivalence theorem was proved first by Landau,
Leipziger Berichte, 65 (1913), 131-8. Landau’s proof is modelled on Schur’s of § 5.9.

M. E. Grimshaw, JLMSS, 9 (1934), 94-102, proves the analogue of Theorem 45.
Some further references are given in the notes on Chs. VI and X.

In the text we suppose for simplicity that a(zx) is bounded in every finite (0, X).
The analysis for Hélder means is valid for all integrable a(x). The same is true
for Cesaro means with k > 0, but the integrals which occur may sometimes diverge
when k& < 0. Thus | (x—¢)*a(t)dt diverges for « = n7 when a(z) = (sinz)~# and
—1 < k < —$%. This is unimportant here, since the means of negative order are
only interesting in themselves when a(x) tends to a limit.

There is a full discussion of the formula (5.14.3), for a(z) integrable in the more
general Denjoy-Perron sense, in Bosanquet, PLMS (2), 31 (1930), 144-64.

The A(x) of the text, being the integral of a(z), is absolutely continuous. But
we may plainly define 4(x) > A(C, k) by (5.14.2) whenever A(z) is integrable,
provided that k& > 0 and we use the first form of the integral. On the other
hand, the integrability of A(x) down to 0 does not necessarily imply that of H'(z):

—1 —2
thus HY(z) = «{lo, 1 when A(z) = 2! log-l- . We must therefore impose
€z x

some additional restriction on A4(x) for small . Since we are interested primarily
in large z, this is no serious drawback.

§ 5.16. The equivalence of the (R,n,k) and (C, k) means was first proved by
M. Riesz, CR,152 (1911), 1651—4: the lines of the proof are indicated rather shortly.
There is a complete proof in Hobson (2), 90-8. A more concise version, by Ingham,
has not been published; this reduces, when k is an integer, to the proof in the text.

§ 5.17. Theorem 59 was proved independently, at about the same time, by
Bohl, Sierpinski, and Weyl: references will be found in Koksma. We follow Weyl,
MA, 77 (1916), 313-52.

There is an ‘elementary’ proof of Theorem 61, depending on simple properties
of continued fractions, in Hardy and Wright, 378-80.
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Waeyl proves much more, in particular the uniform distribution of the points

()}, (B} ..., {B(n)}
in r-dimensional space; here P,(n),... are polynomials linearly independent in the
sense that no combination A, P, +2A; P+ ...+ A, P, with integral A, is congruent to
a constant (mod 1).
A number of special cases of Weyl’s theorems had been stated earlier by Hardy
and Littlewood. Thus they state [Proc. fifth international congress of mathema-
ticians, Cambridge, 1912, 1, 223-9 (226); AM, 37 (1914), 156-91 (164)] that

”n

(@) Y e(mPa) = o(n)
[

forp = 1, 2,... and irrational «, and that the points {n?a} are uniformly distributed.
In a second paper in AM (ibid. 193-239) they prove (a) for p = 2 by a special
method, and more precise results for particular types of irrationals. A third paper
which was to contain the proofs of their more general assertions was never com-
pleted because of the-appearance of Weyl’s more compact and powerful analysis.

In their first paper in AM Hardy and Littlewood prove, by more elementary
reasoning, that the points {n?a} are dense in (0, 1): this is, of course, a weaker
assertion than uniform distribution. Their argument was simplified and extended
by Kakeya, Science reports Téhoku Univ. 4 (1915), 105-9.
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ARITHMETIC MEANS (2)

6.1. Tauberian theorems for Cesaro summability. We re-
marked in §3.8 that there must be a ‘limitation theorem’ for every
method of summation, since no useful method will sum too rapidly
divergent series. Thus the limitation theorem for the Cesiro methods
is Theorem 46, with k' = —1.

There is another limit, of a less obvious kind, to the effectiveness
of these methods, and of all that have proved useful. Every method
will fail to sum series which diverge too rapidly; and it will also fail
to sum divergent series whose divergence s too slow. The theorems which
embody this principle belong to the class which (for reasons which will
appear later) are called ‘Tauberian’. They assert that if a series is
summable (P), and satisfies some further condition Kp (which will vary
with the method P, but will in any case imply a certain slowness of
possible divergence), then it is convergent. For the Cesaro methods the
most characteristic form of K is a, = O(n™!), though this form may
be generalized in various ways.

We shall prove the following two theorems.

THEOREM 63. If Y a, = A (C, k) for some k, and
(6.1.1) a, = O(n?),
then Y a, 18 convergent, and indeed summable (C,—14-8) for every
positive 3.

THEOREM 64. If a, isreal, Y a, = A (C,k) for some k, and
(6.1.2) na, > —H,
then 3 a, is convergent.

We can simplify the argument by a few preliminary remarks. First,
after Theorem 43, we may suppose k integral, replacing k by k' = [k]+1
otherwise. Next, we need only prove the series convergent, since if it
is convergent, and satisfies (6.1.1), it is summable (C, —1+8), by
Theorem 45. Finally, we may suppose a, real, otherwise considering
real and imaginary parts separately. Thus it is sufficient to prove
Theorem 64, with k integral.

We base the proof on two preliminary theorems of some intrinsic
interest. We write b, = na,, and B,, Bl,... for the sums formed from
b,as 4,, A%,... are from a,,.
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TuroreM 65. If 3 a, is summable (C,r4-1), where r > —1, then a
necessary and sufficient condition that it should be summable (C,r) is that
Bj, = o(n"+1).

THEOREM 66. A necessary and sufficient condition that > a, should be
summable (C,r-1), where r+1 > —1, is that

+r+1\1 By —1!
(6.1.3) Z(n T ) = Z (r+2)(r-(:3)..1.)(n+r+l)B'r'

should be convergent; or, what is the same thing, that > n—"-2Brf, should be
convergent.

It is easily verified that
ot T )=+ T = (' F),

n(v+'r+l) (n-}—r—l—l)(V—H) (n_v)(v-i—r);

r+1
and hence (comparing the coefficients of a,,_, in (5.4.5)) that
(6.1.4) (n+r+1)Ar,—(r4+1)A7+ = By,
(6.1.5) ndrtt—(n+r+1)A5tY = B,

From (6.1.4) and (6.1.5) we deduce
(6.1.6) (”+')" Ar_(n+r+l)-1 Arv1 (n+r+1)~1 B
r

"4l r+1 ) 31
n+r+41 _1A7+1_ n+4r “IA"“ __ [(n4r+1\"2 B,
( r+1 ) » r41 LT el n’

and addition of the last equation for n = 1, 2,..., N gives
NAr+1\-1, .. & (n+r+1\-1 B,
(6.1.7) ( i1 ) AT = ag+ Z -2

Theorem 65 is a corollary of (6.1.6), and Theorem 66 of (6.1.7). The
two forms of Theorem 66 are equivalent by Stirling’s theorem. If 7 is
an integer, then the series (6.1.3) may be written in the alternative form

Z (r+1)
n(n+1)...(n+r41)

We can now prove Theorem 64: we may suppose k an integer r4-1,
and H = 1. If B}, # o(n"+1), then there is a positive C such that one
or other of the inequalities
(6.1.8) By, > Cnr, (6.1.9) B < —Cnr+t
is true for an infinity of n. Let us suppose, for example, that (6.1.8)
is true for an infinity of values N of n.
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If n > 1and N < n < 9N, then
N ”n
(6.1.10) Bi—Byy = Z l(n—-v-}-r)_(N——v-{-r)}bv_l_ (n—v-l—r)bv'
r r r
v=1 y=N+1
Hence, since the coefficients are positive, and b, > —1,
N n
Br— i n—v+ry N—v+}-7r _ n—v-+r
v By > z {( r r Z r J
v=1 y=N+1

Here the right-hand side is what stands in (6.1.10) when b, = 0,
b, = —1 for v > 0, in which case

3 Byt = (1—2)"1 3 ban = —a(l—z)"2,  By= —(n+r):

r41
and hence BBy > —(’:j_'l’) +(1r":1' )
o ()~ ()~
and therefore
BBy > — {1+ —(1— g}t

for any positive ¢, any 5 > 1, N < n < 7N, and sufficiently large N.

We can choose € and 75 so that B;—By > —}CN™!, and it then
follows from (6.1.8), with n = N, that Bj > $CN7+ for N < n < 9N,
and so

7N N

B, r 1 (n—=1N _ C(n—1)
Z nrrz > %CN + Z nr+e > %ON”.I ( N)r+2 = OImr+2
& g 7 v

for sufficiently large N. But if this is true for an infinity of ¥, then the
series (6.1.3) is divergent, and > a,, is not summable (C,7+1).

1t follows that (6.1.8) cannot be true for an infinity of », and a similar
argumentt shows that (6.1.9) cannot. Hence B}, = o(n"+!); and there-
fore, by Theorem 65, ¥ a,, is summable (C,r). Repeating the argument
r--1 times, we see that > a, is convergent.

It will be observed that Theorem 63 goes fa.rther'th&n Theorem 64, in that
it asserts summability of the series for negative k. No such extension of Theorem
64 is possible, since the conditions are satisfied by any series of positive terms,
and, after Theorem 46, ¥ a,, cannot be summable (C, —) unless a, = o(n7).

There are generalizations of these theorems for Riesz’s typical means
of § 4.16. We shall not consider these here, except for one theorem which

t Using a range ({N, N), where { < 1, of values of n.
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we shall have to use later. This is a generalization of the case k =1
of Theorem 63.

THEOREM 67. IfO<CA <A <oy Ay >0,
(6.1.11) a, = 0()‘" A)‘"—l) (n > 0),
and "
1 ¢ : 1 )
(6.1.12) = f A(u)du = 5'[ ( 2 a,n) du - s,T
0 0 M<su

then > a,, converges to s.

We may suppose that s = 0 and |a,| < (A,—2A,_1)/A, for n > 0. If
t>zand A, < & <Ay, Apyr <8< Appppq, then

(6.1.13) |A@0) ~A®)] = |tz +Opsgtt ]
A1 —An — A= —Ap - t—A
< *m+1 'm m+r +r—1 m+r m.
ST Tt S T ST

If A(z) does not tend to 0, then there is a C > 0 such that one or other
of A(x) > C, A(x) < —C is true for a sequence of values X of z
tending to infinity. If, for example, A(X) > C and Ay, < X < Appyy,
so that A(X) = A(A), then, by (6.1.13),

A(t) > C—(t—Ay)/Ay > 3C
for A, <t < (1+3C)Ay, and hence
(A+i0x
A(2) dt > }CO%,,
Ax

in contradiction to (6.1.12). Similarly 4(X) < —C leads to a contra-
diction, and so 4(x) > 0.

We cannot replace (6.1.11) by a,, > —H(A,—A,_;)/A, without some
further restriction either on A, or on a,.}

6.2. Slowly oscillating and slowly decreasing functions. A
function f(z), defined for > 0, is said to be slowly oscillating if

(6.2.1) F@)—f@) >0
whenever

(6.2.2) x —> 00, y >z, ylx > 1;
and to be slowly decreasing if it is real and

(6.2.3) lim {(y) —f(@)} > 0

1 A(u) here is equivalent to the 4,(u) of §4.16.
t See the note on this section at the end of the chapter, and that on §7.7.
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in the same circumstances. If f(x) is differentiable, and f'(x) = O(z1),
then

f@)—f(z) = f ) dt = (y x)—>0

under the conditions (6.2.2), so that f(x) is slowly oscillating. Thus
2% = ¢#1o8z jg glowly oscillating. Similarly, if f(x) is real and
f'() > —Hzx1, then f(x) is slowly decreasing: thus 2+ cos z+-cos(a log x)
is slowly decreasing.

We shall say that a sequence s, is slowly oscillating, or slowly
decreasing, if s(r) = s, is slowly oscillating or slowly decreasing. If
8 = @g+a,+...+a,, then s(x) is the sum-function of 3 a,. It is easily
verified that s, is slowly oscillating when a,, = O(n!), slowly decreasing
when a, > —Hn1.

If f(x) is slowly oscillating, then |f(y)—f(x)| < e when y > z > X(e)
and (y—x)/x < k(e). If it is slowly decreasing, then f(y)—f(z) > —e
under similar conditions.

There is one simple corollary which we shall require in Ch. VII. If
f(x) is slowly decreasing, and ¢ > 0, p > q are fixed, then there are an
H and an X such that

(6.2.4) f(p2)—f(qz) > —H
for z > X. For there are a U and a « such that
fO—fu) > —1 (qu>U, 1 <tju<
If r is the integer for which «"-1 < p/g < «*, and
Ty =¢qx, Z; = Kqx,..., T,_; = k""qx, =z, = pz,

then we may take t = x,,,, u = z, for s = 0, 1,..., r—1, and

1(p2)~1(ge) =3 (fles) @)} > —r,

so that (6.2.4) is satisfied with X = U/q, H = r. If also f() is bounded
in every finite interval (0, X), then (6.2.4) is satisfied, with an appro-
priate H, for x > 0.

There are important generalizations of Theorems 63 and 64 in which
the condition on a, is replaced by the more general condition that s,
is slowly oscillating or slowly decreasing. These will be included in the
more difficult theorems proved in Ch. VII, but we illustrate the ideas
here by proving the simplest theorem of this kind.

THEOREM 68. If 3 a, is summable (C,1), and s, is slowly decreasing,
then 3 a, is convergent.
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We are given that s, — s (C, 1) and that
l_iﬂ(spn—sn) =0

when n - 00, p > 1, and p - 1; and it is sufficient, after Theorem 65,
to prove that

(6.2.5) U, = a;+2a,+...+na, = o(n).
Let us suppose, for example, that
(6.2.6) u, > Cn

for a positive C and an infinity of », in contradiction to (6.2.5). Given
any positive 7, we can choose N and p > 1 so that s,—s, > —n for
n > N and n < v < pn; and we may suppose that py < $C. Then

U, = (n+1)s,—84—8;—...—58y,
Uy—U,, = (n+l)(s,—sn)—{—(sv——s"+1)+...+(s,,—s,,_1) > —vn > —pnn,
and u, = U, +u,—u, > Cn—pyn > }Cn

for any n > N satisfying (6.2.6) and n << v < pn. Thus

lon] [on)
D oty > ;Cn;';(v_l_i_l_) - %Cn(%—mi—_l_—l) > %0(1_%).

v=n

Hence the series Z Un ] is not convergent, and so, by Theorem 66,

n(n+1)
with r = 0, > a,, is not summable (C, 1).

Similarly, we can show that the hypothesis u,, << —Cn, for an infinity
of n, leads to a contradiction. Thus %, = o(n), and the theorem
follows.

The corresponding theorem for functions of a continuous variable is

if f(t) =1 (C,1) and f(¢) is slowly decreasing, then f(t) - 1:1
the proof is left to the reader.

6.3. Another Tauberian condition. There are conditions of other types
which enable us to infer convergence from summability. As an example, we prove

TrEOREM 69. If Y a, is summable (C,1) for somel,p > 1,and 3 n?~a,|? < o,
then S a, is convergent, and indeed summable (C, k) for k > —(p—1)/p-

The result is trivial when p = 1, and we may suppose p > 1. It is sufficient,
after Theorem 65, to prove that

(6.3.1) Bk = Z”: (”'Z“Lk)mv = o(nk+1) (k > —1+;;).

y=0

t This is what, in the notation laid down in Ch. VII, we should call Theorem 68a.
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Now Bk = O{ i (n—v+ l)"v[a,l} = O(yi}-l—y_%:ﬂ) = 8;+8,,

]

say. Here

1) < S ve-ua,| s 1rn—yt 1)k
v=N+1

<( 3

v=N41
by Hélder’s inequality. The second factor is O(n?), where

p—1

0= (Bt =k,

and the first is less than e for N > Ny(c). Hence |S;] < Cen**1, where C is
independent of n, for N > Ny(¢); and S, is plainly o(n*¥+1) when N is fixed. This
proves (6.3.1), and therefore the theorem.

UYp( n ) (»-1)/p
""llavl”) { 3 We-D(p—yt l)kp/(p—l)} .
v N1

6.4. Convexity theorems. If ¥ a, is summable (C, %) then, by
Theorem 43, it is summable (C, k') for any k' > k; and if it is bounded
(C, k) then it is bounded (C, %'). But boundedness (C, k) does not imply
summability (C, £’), for any k. There is, however, a slightly more subtle
theorem.

TaEOREM 70. If ¥ a, is bounded (C,k,), and summable (C, ky), where
ky > ky > —1, then it is summable (C, k) for k; < k < k,.

We prove this here only for integral k,, k,, k, when ky = k,+1,
k = ky+m, I and m being integers and 0 < m < I. It is sufficient to
prove the theorem when ! = 2, m = 1. For suppose the theorem proved
in this case, and also for general I, m with I = 2, 3,..., L—1; and con-
sider the case ! = L. Then 3 a,, being bounded (C, ¥,), is bounded
(C,%,+L—2), and therefore (by hypothesis) summable (C, ky+L—1);
and hence (again by hypothesis) it is summable (C, ky+m) for
0<m< L. :

We may also suppose that the sum (C, k) is 0; and we have there-
fore to prove that A¥ = O(n*) and A%+2 = o(n*+2) imply A*+1 — o(nk+1);
or, writing B, for A%, that B, = O(n*¥) and B2 = o(n¥+?) imply
BL = o(n*+1),

Suppose that 0 <$ < 1 and N = [#n]. Then

n
Bi—BY = Byt Byt + By = (i—N)Bi— 3 (Bi—BY

= (n—N)BL:—{By,3+2By.s+...+(n—N—1)B,),

BimBYy | Byt 2Bywtt—N—1B, _ .

1
By = n—N + n—N

Q= o‘_l_ nk — O{(1—6)nk+1),

A= vsuz—:o)n }
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uniformly in &, and
P = o(n-t.n*+?) = o(n¥*+?)
when & is fixed. Hence (taking & near 1) we deduce that B}, = o(n¥+1),

Theorem 45 is the form assumed by Theorem 70 when £, = —1,
ky = 0. In this special case we have proved the theorem for non-
integral k. .

6.5. Convergence factors. A familiar theorem of Abel and
Dirichlet, included in Theorem 8 of §3.5, states that if (i) >a, is
convergent or bounded, (ii) f, decreases steadily to 0 when n — o, or,
more generally, f, -0 and 3 |Af,| <o, then ¥ a,f, is convergent.
There are many important generalizations of this theorem for summable
series.

These generalizations are of two types. In the first, we impose on Jn
only the natural extensions of condition (ii), and infer the summability
(C,k) of ¥ a,f, from that of > a,. In the second, we impose stronger
conditions on f,, and infer that ¥ a,f, is summable (C,k—s) for some
positive s: thus a typical case would be that in which f, = (n+1)~*.
Both types of theorem present considerable difficulties when the para-
meters are unrestricted, and we shall confine ourselves here to integral
k and s, for which the proofs of the main theorems are comparatively
simple.

The principal theorem of the first type is

TuroreM 71. If (i) 3 a, is summable, or bounded, (C, k), where k is
an tnteger; (i) f, - 0; and (iii)

(6.5.1) S (4 DH AR, | < 003
then Y a,f, is summable (C, k), and
(6.5.2) z Upfn = 2 AﬁAkam

the last series being absolutely convergent.
We require two lemmas.
THEOREM 72, If f, satisfies the conditions of Theorem 71, then

(6.5.3) (m+1)Af, >0 (I =0,1,..,k),
(6.5.4) 3 (n+1)|ARf, | <o (I =0,1,..,k).
We can write (6.5.3) and (6.5.4) in the equivalent forms
(6.5.5) (”’ZH)A' 50 (= 0,1,..,k),
n+0\ A —
(6.5.6) z ( . ’)|A+f,,l <o (I=0,1,.,k).

The conditions given are (6.5.5) for I = 0 and (6.5.6) for I = k.
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Since f, — 0, A¥f, - 0, and so
N, = 3 Ak,
n

(LAY, | < (a1 S [ARf | < S+ 1DF|ARL ]| > 0,
by (6.5.1). This is (6.5.3), or (6.5.5), for I = k.

Next,
Z("fol)mkfnl z(’“f i l)anAk“fl

—21Ak+‘fvlz(n+k Y- ;(”:k)lAk+lfyl<w.

It follows that (6.5.6) is true for = k—1; and therefore, by the argu-
ment of the preceding paragraph, that (6.5.5) is also true for [ = k—1.
Repeating the argument, we conclude that both assertions are true
generally.

THEOREM 73. If b, = a, f, then
n k . .
k+1\(n—j+k— .
(6.5.7) Bk = z Ak z:( + )(n .7+i @)Akﬂ-zfjh_’

= st k—
with the convention that any f,, occurring in A¥+3=if, . is to be replaced
by 0 when m > n.
If U; = ug-t-uy+...4-u; U}, U3,... are defined as usual, and v; with
j > n are treated as 0, then

Su;= S UAv, = S UIAW, = .. = 5 Uk Ak

< jYi & “3T0 < 7 bl i 3
and hence

< (n—j+k 2 n—j+k
Bk — Z( i““ )ajf,. = ZA;.‘A"“{( f )fj}-
5 i=o
k+1

But AR, f,) = ("jl)Aichkﬂ—ifjﬂ..
Since here ) e ) )

Afe, — m(”—f’“) — (”‘5:’;“) (0<i<h),

and A¥+lg; = 0, we obtain (6.5.7).
Passing to the proof of Theorem 71, we divide (6.5.7) by (n—]L—k) and

make n —> 0o0. First, we may discard the convention. For it affects only
4780 K



130 ARITHMETIC MEANS (2) [Chap. VI

the terms in which j > n—Fk; the number of such terms is bounded;
and each involves an A¥ which is O(n*), an f,, which is o(1), and a
bounded numerical coefﬁoient; so that their aggregate is o(n*). We have
therefore to find the limit of

n+k\-1 k+W\(n—j+k—1 ) k

SUIPED by (i S AED L

i=0 =0
where S, ; contains the terms involving a given 3.
If i > 0 then

800 = Ot 1 S (41" TSR sk ) — o
where =

(g < Hn4-1)*(j D¥(n D=4 ARH=iF, |

1
= AL Gr1pa - < B 1R

and H is independent of m. Also ,20( JH LAk | <o, by

M:

)
0 J

Theorem 72. Hence Y u,; is majorized by a convergent series with
terms independent of n; and wu, ;> 0, for any fixed j, when 7 — 0.
It follows that S, ; = o(1) for s = 1,2,..., k.

It remains to find the limit of

o (Y S s

j=0
This is majorized by > |A¥|| AR+
n—j+k\ [(n+k
and ( % )/( P Rnak®
for every j, when n - co. Hence
80— D AF AR+,

and this completes the proof of Theorem 71.

We may modify Theorem 71 by supposing (i') that > a,, is summable
(C,k) and (ii’) that f, is bounded. The last condition, with (iii), ensures
that f,, tends to a limit f, not necessarily 0. The conclusion then follows
from Theorem 71 on replacing f, by g,+f.

Theorem 71, and the modified theorem, may also be deduced from
Theorems 1 and 3, and it may be shown that the conditions are also
necessary, in the sense that, if they are not satisfied, there are series
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2 @, which are bounded (C, k), or summable (C, k), while 3 a,f, is not
summable (C, k).

Iff, = (n+c)=2, where ¢ > 0, s > 0, then A¥+1f, = O(n-#-¥-1); and if

6.5.8 =gt 4. G __l__}

( ) fn co+n+1+ +(n+l)"+1+0{(n—f-l)"+2 ’
then A*+f, = O(n-%-2). In either of these cases condition (iii) of
Theorem 71 is satisfied. We thus obtain

TarorEM 74. If Y a, is summable (C,k), then 3 (n+c)~*a, is
summable (C, k).

TeEOREM 75. If 3 a, is summable (C, k), and f, is of the form (6.5.8),
then > a,f, is summable (C, k).

In particular
(6.5,9) = (n+al)(n+“2)...(n+az) ,

I = n B+ o) B

where the « and B are positive, is of the form (6.5.8), and so is f;1; thus
the summability of either of

D e s MR v w3
(n+oy)...(n+ay)’ (n+By)---(n+B)’

for any k, involves that of the other. We shall use this case of Theorem
75 in the next section.

6.6. The factor (n+-1)-°. The principal theorem of the second
type is
TaEOREM 76. If Y a, is summable (C, k), and

0<s<k+l,
then the series

(6.6.1) > (”:“")_la,,, > @‘_‘}_n_l)s

are summable (C, k—s).

We suppose k and s integers, all proofs for non-integral values.being
a good deal more troublesome. Some preliminary remarks are required.

(1) If either of the series ay+a,+a,+... and 0+ay+a,+... (ie.
0-+b,-+b,+..., where a, = b,, ) is summable (C, k), then so is the other,
by Theorem 47. It is therefore indifferent whether we state Theorem 76
in terms of a¢y+a,+... and the series (6.6.1), or in terms of a,+a,+...
and the series

(6.6.2) D (n—l-{-s)—lam C e,

8 nt
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summed over 1 to co. It is plain that, if we do this, we may suppose
any of the « or B of Theorem 75 to be 0.

(2) Next, n_s(n—l—l—s) _ 1 (n+1)(n+2). .(n+s—1)

s “s! 781

is of the form (6.5.9), with n—1 for » and ! = s—1. Thus the summa-
bility (C,r) of either of (6.6.2), for integral r, implies that of the other.

We consider the second series (6.6.2), with s =1. If Y a, is
summable (C,k), then > n-'a, is summable (C,k), by Theorem 71.
In order that it should be summable (C,k—1), it is necessary and
sufficient, by Theorem 65, that Q-1 == o(n*), where Q%! is formed from
¢, = n(n-la,) = a,; i.e. that AX-! = o(n*). But this is true because
Ak-1 = Ak Ak | and n*AE tends to a limit.

Thus the series >nla,

is summable (C,k—1). It follows, by Theorem 75, that > (n+o)'a,,
where « > 0, is summable (C,k—1). Hence, repeating the argument
s times, the series (6.6.2) or (6.6.1) are summable (C, k—s).

It follows from Theorems 71 and 76 that, if > a, is summable (C, k),

(6.6.3)

a, eakaa 1 : \ Ak
Z n+1" z Az +1n+1 = (k+1)! Z (n+1)(n4-2)...(n+k+2)’

the first series being summable (C,k—1) and the last absolutely con-
vergent; there is a similar formula for the sum of the first series (6.6.1).

6.7. Another condition for summability. We saw in §6.6
(Theorem 76) that the summability (C, k) of 3 a,, implies the summa-
bility (C,k—1) of > (n-+1)~*a,. The converse is false: for the last series
is (absolutely) convergent whenever a, = O(n~'), and then, after
Theorem 63, 3 a, cannot be summable (C,k), for any k, unless it is
convergent. There is, however, a more subtle connexion between the
two series.

THEOREM 77. If k is integral then, in order that Y a, should be sum-
mable (C, k), it is necessary and sufficient that there should be a solution
b,, of the equations ' '

(6.7.1) a, = (n+1)b,—b,;) (»=0,1,2,...)
such that 3 b, is summable (C,k—1). In these circumstances

= I Gnit —1
(6.7.2) b, = n+1+n+2 (C,k—1),

and the sums of the two series are the same.
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It is plain, first, that we can solve (6.7.1) by recurrence; that if b,
is any solution then the general solution is b, = b,,—#%, where % is an
arbitrary constant; and that the conditions of the theorem can be
satisfied by one solution at most.

(i) We begin by proving that, if b, is any solution, then

(6.7.3) — (k+1)BE—(n+1)BE1 (k= 0).
Here B, ! means bn. First, if £ = 0, then
= A, = by—b;+2(b;—by)+... +(n+1)(b,~ b, 41) = By—(n+1)b, .,
which is (6.7.3). Next, assuming (6.7.3) for a given k, we have
AgH = (k+1)(Bf+ B¥+...+ Bf)— Bf 1 —2Bf-1—...—(n+1) Bk}
= (k-+1)BE+1— (n+1) Bk, +(n+1) B¥-14-nB¥-14 .. Bk-1
= (k+2) Byt —(n+1)Bg,,,
which is (6.7.3) with k-1 for k.
(i) Next, we prove that ¢f B = b, is summable (C,k—1), then
A = 3 a, is summable (C, k), and A = B. First, if k& = 0, then B, - B
and (n+1)b,,; - 0, so that 4, — B. Secondly, if £ > 0, then

Bl1 — (";:f: 1)B+o(n"—1)
and so, by summation,
Bt — (n_]i_k)B—{—o(n").
Hence, by (6.7.3),
{(k+1)(”+’“) o1 )} Brom) = (M) Brotus),

and A is summable (C, k) to sum B.
(iii) Thirdly, we prove that if > a, is summable (C, k), then

(6.7.4)  BE-1— (”+’“)h+("+k )A—}—o(nk Y (k> 0),

(6.7.5) b, = h4o(n-1) (k= 0),
h being a constant. We may suppose without loss of generality that
A =07
We have
(6.7.6)

(n+k+2)BE—(n+1)Bk,; = (k+1)Bi—(n+1)Bi7} = A% = o(n¥),
t If b, is a solution of (6.7.1), @, = a,— 4 and a, = a, for n > 0, then the b}, defined
by b, = by—A, b, = b, for n > 0, is a solution of a; = (n+ 1)(bx—bs,1). The effect of

diminishing a, and b, by 4 is to diminish 4%~ and B:~! by (n—]L—ic_;- I)A.
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by (6.7.3) and our hypothesis. If )
(6.7.7) (R+1)(n+2)...(n+ k1), = BE,
then (6.7.6) gives

(04 1) (A2 (04 k4 2) (B —bpsr) = AE = o(n),
and 80 ¢, —¢,,; = o(n?). Hence ¢, tends to a limit ¢, and

i k

618 $p=4+3 TG TETE = ¢+°(;z)’
(6.7.9) B% = (n+1)(n+2)...(n+k+1)¢+o(n¥).
Finally, from (6.7.6) and (6.7.9) it follows that

n+1

and this is (6.7.4), with 4 = 0, b = (k+1)!¢, and n+1 for n. The
proof is valid, and gives (6.7.5), for k = 0. :

(iv) It is now easy to complete the proof of the theorem. In the first
place, the condition is sufficient, by (ii). Secondly, if } a,, is summable
(C, k), b, is any solution of (6.7.1), and b, = b,—h, where h is the h of
(6.7.4), then b, is also a solution; and

BE-1 — Bk-1_ (”““)h - (”‘“L’” )A+o(nk—1),

Byt =2 By = (1)t ("FEH ) gtotmton;

k—1

by (6.7.4) or (6.7.5), so that 3 b, is summable (C,k—1) to sum 4,
the result holding for k = 0 since & is plainly independent of £. Hence
the condition is also necessary.

Finally, since 3 b,, is summable (C,k—1),

a0

bn = 2 (bv_bv+1) Z

n

by Theorem 48. For b,, the & and ¢ of (iii) are 0, and (6.7.7) and (6.7.8)
give A
— Bk — 1 — (B41)1 S - v .
b = By = (k+1)!go = (b-+1)! Z ) +2)...(v+k+2)
Thus

Oy A%
2 P (e+1)! Z (n+1)(n+2)...(n+k+2)

(C,k—1).

This is (6.6.3). Our proof here is independent of Theorems 71 and 76.
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A corollary of Theorem 77 is

THEOREM 78. A necessary and sufficient condition that > a, should be
summable (C,k) is that there should be a system of numbers a, ,, where
§ =0, 1,..., k41, such that

Apo = Ay, Aps-1 = (n+l)(an,s_a’n+l,s) (s >0),
and that . Apps =2 Cppny

18 summable (C, —1). In these circumstances

7,8—1 n+1.s—1 —

Ay = n—|—1+ 'n+2 e (Ck—s)
Jors=1,2,..,k+1; A4, =3 a,, is summable (C,k—s); and the sums
of all these series are the same.

We have only to apply Theorem 77 k-1 times in succession.
Theorems 77 and 78 may be used to obtain instructive proofs of the
equivalence theorem (§ 5.8) and of other standard theorems in the
subject. .

6.8. Integrals. There are ‘Tauberian’ theorems for integrals like those of
§6.1. If
(6.8.1) fa(x)dx = A4 (Ck)t

for some k, and a(x) = O(z!) for large x, then (6.8.1) is true for all £ > —1: in
particular, the integral is convergent. If (6.8.1) is true for some k, a(x) is real,
and za(x) > —H, then the integral is convergent. The analogues of the pre-
liminary Theorems 65 and 66 are: (i) if the integral is summable (C, 74-1), then
a necessary and sufficient condition for summability (C, r) is B,(x) = o(z"+1), where
B,(x) is formed from b(x) = za(x) as 4,(x) is formed from a(z); and (ii) & necessary
and sufficient condition for summability (C,7-+1) is that I z"2B,(z) dz should
be convergent.

There is an analogue of Theorem 71: if (6.8.1) is true, f(z) — 0, f ®)(z), the kth
derivative of f(z), is absolutely continuous, and f «*| f *+1(x)| dz < co, then

(082)  [a@f@) de = (—14 [ @)@ dz (C,k),

the last integral being absolutely convergent. In particular this is true if
J(x) = (x4 1)% where s > 0. On the other hand, there is no analogue of Theorem
76; the introduction of a convergence factor like (z-+1)~* does not necessarily
decrease the order of summability needed. Thus if a(z) = e?*cos e* then

. z
Ay(x) = —Hz+cosl—cose®+ fcose‘ dt ~ —Hz,
o

where H = cos 1 + sin 1, and so

(6.8.3) [ ecoser dw = —cos1—sin1 (C,1).
e*¥cos e®
But f prag dz

is not convergent, and indeed not summable (C, k) for any k < 1.

1 Asin § 5.14, integrals written without limits are over (0, ),
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Ir ‘

(6.8.4) . J(O) = f e-%%a(z) do

is convergent for § > 0, and tends to A when 6 — 0, then we write

(6.8.5) J = fa(x) dz = A (A)

and say that J is summable (A) to A. It would be natural, after § 5.12, to expect
summability (C, k) to involve summability A, but this is one of the points where
the analogy between series and integrals breaks down. The summability of J
does not involve even the convergence of J(8). Thus the integral (6.8.3) is
summable (C, 1), but | e*-9%cos ¢® dx is not convergent if 5 < 1.

However, if J is summable (C, k), and J(8) is convergent for every positive 3,
then J is surnmable (A). For then

Adx) = fe‘“a(t) dt = 0(1)
i)

for every positive §, and
£ das F
A(z) = f est—dﬁ dt — e A%x)—8 f PAY(t) dt = O(e?®)
0 0

for every such 3. It follows that A,(z) = O(e’®) for each k; and so, by k41 partial
integrations, that

o0 (=]
(6.8.6) J(3) = [ eta(z) du = 841 [ e924,() da.
0 0
But klz—*A4,(x) ~ A, and therefore
Sk+1 v
J(S) ~ A —k—' f 6‘5%" dr = A.

0

We can obtain a more satisfactory theorem as follows. The integral | @%e~5% dx
is convergent for every k, so that, after (6.8.2), the summability (C, k) of J involves
that of J(8), and the truth of (6.8.6), the integral on the left being summable (C, k)
and that on the right absolutely convergent. It then follows that J(8), interpreted
as a (C, k) integral, tends to 4.

The integral j e%i@tbve g where @ > 0, b > 0, is summable (A), but not (C, k)
for any k.

6.9. The binomial series. In the rest of the chapter we study the
summability of some particularly important special series. We begin

With the series
_ S (o

where a=B+iy, z=¢€9 |0 <m.
It is familiar that the series is (1) absolutely convergent when 8 -<< —1,
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(2) convergent, but not absolutely,} when —1 << 8 <0 and 6 # 0,
(3) divergent when B > 0, or when —1 <{ 8 < 0 and 6 = 0; and that
the sum of the series, when convergent, is
(1—2)~=-1 = exp{—(a+1)log(1—2)},
the logarithm having its principal value, for which |Jlog(1—z)| < 4.
We shall determine the conditions under which it is summable (C, k),
for any £ > —1.
We suppose first that
B>—1, k>-—1, [0)<m 0#0, z#L
Then
Sa,ut = (1—2u)—>-1, Y Akur = (1—u)*-1(1—2u)->1,
k_ 1 du
" 277120 (1 —u)*+1(1—zu)x+Hyn+l’

where u = pe*®, C is the circle p = p, < 1, and the powers of 1—u and
1—zu have their principal values. Hence, by Cauchy’s theorem,

P J‘ du .
An = 2w + (T—u)F (1 —zu)*+iyn+t = Jy+d,
Cy C,

where O, and C, are two contours surrounding the points = 1 and
% = 1/z = { and going to infinity in the directions ¢ = 0 and ¢ = —40
respectively. We may suppose C; and C, formed by circles round » = 1
and % = {, and straight lines with arguments 0 and —6, these last
described twice in opposite directions.

We write J; in the form J;, = J(1)+J§2’, where

JP = a— z)“a_lf(l (n;’c—k)(l_z)‘“‘l,i

— u)k +1un+1

Jo — 1 f 1 1 } du
om ) \(1—uz)*l (1—2)o+ (1—u)k+lyn+1’
(A
We suppose that » > |1—{|~! and take the radius of the circular
part of C, to be n-1, so that u—~1 = O(1) on the circle. Also
u
(1—uz)~21—(1—z)=1 = (a+1)z f (1—wz)~22 dw
1

is O(ju—1}) on the whole of C;, and O(n-') on the circle. Thus the

1 Except in the trivial case 8 = —1, y = 0, a+1 = 0, when the series reduces to its
first term 1.
1 Evaluating the integral by deforming C; back into C.
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contribution of the circle to J{® is O(n~1.n-1.n%+1) = O(n*-1), and that
of the rest of C, is

- zx—1 . o dt
of | @i =o] [ gtn iy

1+n—t
0l pk+1 ) tdt 0 nk+1 (k-1
[ ("] +t)n+.i} {n(n 1 )} (n )-

Hence J, = (n+k)(l z)~14-0(nk-1),

Similarly we write J, = J§+J2), where

JO — (I—C)-k—lf(l_zu)a+lun+l
(n+a)(1j2)k+l (n—l_a)(f:%’

1 1 du
IP == f {(l—u)k+1 (a— C)’“’l} (l_zu)a+lun+1’

and we can prove tha.t J@® = O(nP-1) by an argument like that which
we used for J{2.
Collecting our results, we find that

Ak = (n"i'k) (1—eif)-a-14 O(nk-1)+ (n?i‘o‘) enif(1 —e~10)-k-14 O(nB-1).

The first term here is the dominating term when t > B, the third when
k < B; if k = B then these terms are of the same order of magnitude.
We thus obtain

THEOREM 79. If a = B+iy, B = —1L k> —1, |0]| <7, and 6 540,

then the series z( +°‘) e is summable (C,k) when k > B, to sum
o

(1—ei)-2=1, It oscillates finitely (C, k) when k = B, and infinitely when
kE<B.

It is plain that the argument will prove uniform summability in any
closed interval of 8 which does not include 6 = 0.

When 6 =0,z=1,¢a, = (n—l—a)’

Bon (1 o\ ke k n4at-k+1
> Akur = (1—u) 2, Ak ( et b1 )
(n+k)-1Ak~ Dk+1) o

and k Fafk+2)
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Thus we obtain

TreEOREM 80. The series Z (ni—a) s never summable (C, k), for any

k, unless B < —1, in which case it converges absolutely to 0, or g = —1,
y = 0, in which case it reduces to tts first term 1.

6.10. The series 3 n%”#%. From Theorems 79 and 80 we can deduce
corresponding results for the series 3’ n®"®.+ We suppose for the present
that B > —1, leaving the case 8 = —1 to the next section.

Ify = 0and Bis integral (so that « is integral) then

(6.10.1) n% = Po(ni—a)'{‘l’l(ntiTl)+-~+Pa,

where p,, p;,... are independent of #n. If « is not an integer then

(n—l—a—

o—v

V) = €y NV -0,y OV g, NP4 O(nF-R1),
where % is arbitrary, v = 0, 1,..., &, and ¢,, # 0; and, combining these
equations, we can express #* in the form
(6.10.2) n“=po(”+°‘)+p1("+“jl)+...+p,.(”*“;’”)+0<nﬁ—h-l).
¢4 ax— o—
Combining Theorem 79 with (6.10.1) or (6.10.2), we obtain
THEOREM 81. If o = B+iy, B> —1,k > —1, 8] < = and 0 % 0,

then the series Sn*e™? is summable (C,k) when k > B, oscillates finitely
(C, k) when k = B, and oscillates infinitely (C, k) when k < B.

6.11. The case § = —1. The case in which 8 = —1 is in some ways
particularly interesting. The series
n—1+1y\ i ~14dygnil
(6.11.1) Z(_I_H,y)e , Y molviveni,

where y £ 0, are convergent unless § = 0 (mod 27). In that case they
oscillate finitely, since

(n—l—}-iy) _ DPtesy)  nl+w 0(1)

—l+iy ) T@y)L(n+1)  Tey) — \n?f

n=l o onr—1
m—1+1?._ .

> 7

n=1 14 A

— z m—1+ty_ Jt~1+iy dt = z f (m—1+iy_t—1+iy) dt,
1 1
1 m

t The series starting from n = 1 when 8 < 0.
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and the general term of the last sum is O(m~2).f Since the series (6.11.1)
are not convergent, and their general terms are O(n-1), it follows from
Theorem 63 that they are not summable (C, k) for any &.

It is interesting to investigate certain other properties of these series,
and in particular to prove their partial sums bounded uniformly in 6.
More generally, we prove

TrEOREM 82. If
(6.11.2) A, = ayta;+...+a, = O(1), Aa, = O(n-3),
then
(6.11.3) ls,(2)] = I? a,,,zml <H

for 2| < 1, H being independent of z and n. In particular this is true
when a,, is (n—l—l-.zy) or n=1+% (with ay = 0 in the second case).
— 142y

We note in passing that the hypotheses (6.11.2) imply a,, = O(n™?).
In what follows we shall be dealing with functions of # and 2, and O’s
will be uniform for |z| < 1. It is sufficient, by the principle of the
maximum modulus, to prove (6.11.3) when z = ¢# and 0 < |0] < m.
We suppose 6 > 0, and write p = [#/6], so that p > 1.

If p = n then

n, Ky nv‘l . .
5,2) =Y a,,em® =3 A, Aemt A4, ?
0 0

— (1—e)"S0(1)+0(1) = O(d)+0(1) = O(1).
[\)
If p < n then
Sn(z) = Ep Ay, emi0+ i A, el = Sl+S2’
0 p+1

and the argument just used shows that §; = O(1). Also

k(3 . . n .
( 1— 61‘0)82 — glam Aemze =0, e® 10 __ a, e(n+l)10_p§26m1,0Aa/m_l
D

n
= O(p™)+ 2+10(m‘2) = O(p7) = 0(0),
. b9
since @, = O(n-1), and so S, = O(1).
It follows from Theorem 82 that, for example, the series

n—l+i'y
logn
is uniformly, though not absolutely, convergent on the unit circle.
m—l+i-y) _ (n+iy)

~14+iy )]\ 4y )

(6.11.4) P (0= 2,3, y #0)

n

1 Alternatively, we may use the identity Z (
0
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We leave it to the reader to prove

THEOREM 83. If —1 < B < 0, a, = o(1), Aa, = O(nf-1), then
(6.11.5) [8,(2)] < H|1—z|-B-1
Jor |z| < 1. If a, = O(1), A%a, = O(n~2), then (6.11.5) istrue for B = 0.

6.12. The series > n-te4in*, The series
(6.12.1) S a, = > n-vedin,
where 4 >0, 0<a<l, b = B+iy,

is particularly interesting and may be used to illustrate many points
in the theory of summable series. It is absolutely convergent if 8 > 1,
and we shall suppose throughout that g <C 1.

The order of a,, is decreased, by a factor n4-1, by differentiation, so
that the series is adapted for study by means of the Euler-Maclaurin
sum formula; but the discussion of its summability on these lines is
rather tiresome in detail, and we shall use a different method depending
on a direct use of Cauchy’s theorem.

THEOREM 84. The series (6.12.1) 1s summable (C, k), where k > —1,
if and only if
(6.12.2) (k+1)a+pB > 1.

We write

u(z) = zbedis®, Uy = 0, u, = u(n) (n>0),
z~% and 2® having their principal values in the half plane R(z) > 0, and
o D(n—m-+k+1

(6123)  S=T@E+)UE= > iﬁyﬁtﬁum.

m=1
We have to show that %S tends to a limit if and only if % satisfies
(6.12.2).
We denote by C the rectangle (3 —:iY,n—1iY,n+14Y, 3+¢Y), shown in
Fig. 1, by C, and C, the two half-rectangles formed by the lines L, to
L, and Ly to Lg respectively. If

f@) = I'n—z+k+41)

I'(n—z+1)
then Cauchy’s theorem gives

(6.12.4) S = 8—%f(n) = 2im J‘ m cot mzf(2) dz,
¢

u(?),
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where the integral along (n—i:Y, n+4¢Y) is a principal value.t Also

(6.12.5) _2.1177 f nif(2) dz = 0, % f (—mi) f(2) dz = 0.
Cy Cs

3+1Y n+i¥Y
L,
C, L,
L, A
L‘ —_— 7
H <« L, N
Ls
L, C, *
Lg
$—iY n—iY
Fie. 1.

Hence, combining (6.12.4) and (6.12.5), we obtain

©126) 8 = o= [ e dz + o [ pefe d +
Ly Lg

+ [tera 4o [ @@+ [ wore
1

Ls+Ly Ls+L,
where P(z) = m(cot mz4-7)
according as y = J(2) is positive or negative. The integral along Ly L,

is a principal value.
Now

de) = Oemw),  T=2thtl ‘;‘&jﬁl? = O(lyl), 4 — O(ednrt

1 We apply Cauchy’s theorem to C modified by a semicircular indentation round
z = n, and then make the radius of the indentation tend to zero.
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for fixed 7, § < # < n, and large |y|. Hence the integrals along L, and
Lg tend to 0 When Y — 00, and (6.12.6) gives

6127) &= f fe) dz — - f bA+in)f-+iy) dy +
+ —®

t+5: [ dtinsotip dy = -4,

say, the last integral being a principal value.
The integral

[ fpalmtdtl—ig) oo
__‘[ {” km}“@‘f‘@y)‘/‘@ﬁ'ﬂﬁ ay

is majorized by an integral with integrand independent of n, and the
function in curly brackets tends to 1 when » — oo, for every y. Hence

-]

(6.12.8) n—"JI—>% f w(t+oy)h(3+iy) dy

—Q0
@

f (34iy)dedidiv* _B0Y_ gy i,

27rlvl+1
say. As regards J,, we have
. 9mi Qi ,

h(n+iy) = —eom (¥ >0), e W<0)
and so
(6.12.9)

— —; [ Tk+1—iy) .y _S80Y
= | iy ) gy dy

F 1 zy) P(b+1+iy) dy
- f{ T Yot = iy W

the last mtegral being absolutely convergent. It follows that
Jp = O(n=F),f

t We divide the range of integration into (0, 3) and (8, o0), where 0 < § < 1. It is
clear, on grounds of ‘dominated convergence’, that the part of the integral over (8, c0)
is O(n~*). In (0, ) we may expand r
. (k+1—1y) y
3 L el -7
wuln-tay), T(l—dy) ’ e ]

as uniformly convergent power series P(y/n), Q(y), R(y); and it then becomes plain that

n—b f {P( )Q(y) P(—-—)Q( y)}R(y) dy = O(n™#).
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and from (6.12.7) and (6.12.8) that

(6.12.10) 8 = —inkI4o(n¥)+J+O0(n-F).
Now
N ”I‘(n—z—}—k-}—l) _ _r_
(6.12.11) J = T(7-&—_zﬁ)——u(z)alz—f —f_I1 I,
S M, M,

where M, and M, are the lines through % and » parallel to the positive
direction of the imaginary axis. On M,, z = re®, where 0 < 6 <},
0 — 4ar; and |e4t’| = e~4*sinad, Tt followst that

(6.12.12) I, ~ in* f (A +iy)vedid+ivf® dy — inkI*.
We now take a (small) fixed 8, and write
6.12.13
( )1 [T (k- 1—iy) : .7
o == 1 J ~P(1_iyru(n+zy) dy = ’L! —l—zg[ = L+1,

In I, y > on, and z = n-+iy = re¥, where 0 <w < 0 <} and
depends only on 8. Hence
|eAiz”| — g—Ar®sinal - e—Br",

|2t = rPer? < Or-#, dy = cosecl dr < D dr,

and
(6.12.14) _I4 = 0( f rk—ﬁe—Br‘ dr) — O(e_Ena)’
on

B, C, D, and E being positive functions of 3.
Finally, if 0 <y < 8n, we have
edin+in)® — edin®—dan® y+.. — O(e—F‘n""ly),

where F is a positive function of 3. Hence

1 on
(6.12.15) I, = o:n—ﬁ( f e=Fn* dy + f yke—Fn®y dy)}
0 1

o O(n‘ﬁ)—]—O(n—B J. yke—Fn“‘ly dy) = 0{n—/3+(k+l)(l—a)}’
0

since (k+41)(1—a) > 0.
Finally, 8 and & differ by 3f(n) = O(n~F). Hence, collecting our
results from (6.12.10)—(6.12.15), and remembering again that
(k+1)(1—a) > 0,
we find that
S = ink(I*— I)+o(n*)+ Ofn-B+E&+va-a)},

+ Again by a simple argument based on majorization.
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If k satisfies (6.12.2) then —B+(k+-1)(1—a) <k and n-*8 - i(I*—1I),
so that the series (6.12.1) is summable (C, k), to sum 3(I*—I).

To prove the negative assertion of the theorem, we must estimate
I, more precisely. If we replace (n+4-iy)-® by n-?, and Ai(n+1iy)® by
Ain®*— Aan®y, we obtain

, o [ D(k+1—1y) .
~bpdin’ —dan®-ty
m2e T(1—iy) e v dy.
When = is large, n3-! is small, so that the integral here is dominated
by the part in which y is large; and we are thus led to replace the

quotient of gamma-functions by (—4y)*. This leads us to the conclusion
that

—I, ~ —in-bedin* J’ (—iy)re—4an'y dy
= e—Hk+DmID(f{ 1)(Aq)—k-Lp—b+0e+1X1-a)pdin®,

There is no particular difficulty in making this conclusion rigorous,
and we suppress the details of the proof. It follows that, when
(k+1)a-+B < 1, 8 involves an oscillating term whose order is at least
n¥, and that the series is not summable.

NOTES ON CHAPTER VI

§ 6.1. Theorem 63 was proved by Hardy, PLMS (2), 8 (1910), 301-20, except
for the clause concerning summability by means of negative order, which was
added by Hardy and Littlewood (lL.c. under § 5.7); and Theorem 64 by Landau,
PMF, 21 (1910), 97-177 (103-13). The method of proof here, based on Theorems
65 and 66, is Hardy’s. A good many other proofs have been given, particularly
for the special case & = 1, which is important in the theory of Fourier series. See,
for example, Bromwich, 423-6; de la Vallée-Poussin, Cours d’analyse infinitésimale
(ed. 6, Louvain, 1926, ii, 109); Kloosterman, JLMS, 15 (1940), 91-6; Mordell,
JLMS, 3 (1928), 86-9, 119-21, 170-2.

Theorem 67 was found by Hardy, PLMS (2), 12 (1913), 174-80, in the more
general form in which Y @, is given summable by Riesz’s typical means of some
order. A gap in Hardy’s proof was filled by Ananda Rau, PLMS (2), 17 (1918),
334-6. The form of the proof here for £ = 1 is due to Bosanquet.

Hardy states erroneously that @, > —H(A,—A,_;)/A, is a sufficient condition:
the mistake was corrected by Ananda Rau, PLMS (2), 30 (1930), 367-72. On
the other hand, the two conditions

(1) ap> —HO=AdAw (2 lima, >0
are sufficient: in this case A(x) is slowly decreasing in the sense of §6.2. This
theorem is included in one due to Szész, Miinchener Sitzungsberichte (1929), 325-40:
see thenote on § 7.7. If A,,;/A, — 1, then (1) implies (2) and is sufficient in itself.

§ 6.2. The definitions of slowly oscillating and slowly decreasing functions and
sequences are due to R. Schmidt, M Z, 22 (1924), 89-152 (127-42). We shall use
two forms of the definitions, the first appropriate to the interval (0, c0), the second
to (—o0, 0): see § 12.2. It is the first form which is relevant here.

4780 ; L



146 ARITHMETIC MEANS (2) [Chap. VI

§ 6.3. Hardy and Littlewood, MM, 43 (1914), 134—47. Actually the convergence
of 3 n?-1|a,|? is a sufficient condition for the corresponding theorem concerning
summability (A).

§ 6.4. Theorem 70, for integral parameters, is proved (though not quite
explicitly) by Hardy and Littlewood, PLMS (2), 11 (1913), 411-78 (437). The
theorem is the case 8 = 0 of their Theorem 19, with ‘bounded (C, r— k), summable
(C,7)’ in the hypotheses. They state their result only for 8 > 0, but the proof is
valid for B = 0.

There is a considerable literature concerning the general form of the theorem
with unrestricted parameters, and extensions of it important in the theory of
Dirichlet’s series. See, for example, Ananda Rau, PLMS (2), 34 (1932), 414-40;
Andersen, Studier, 56 et seq.; Bosanquet, JLMS, 18 (1943), 239-48; M. Riesz,
MTE, 29 (1911), 283-301, and AUH, 1 (1923), 104-13; Zygmund, M Z, 25 (1926),
291-6. Bosanquet gives further references.

§§ 6.5-6. Theorem 71 was proved independently by Bohr [CR, 148 (1909),
75-80; Bidrag, 61-9] and by Hardy [PLMS (2), 6 (1908), 255-64; and 8 (1910),
277-94 (278-81), where a mistake in the earlier paper is corrected]. A number
of special cases had been proved earlier by various writers, e.g. by Bromwich,
MA, 65 (1908), 350-69, and by Hardy [PLMS (2), 4 (1906), 247-65 and MA,
64 (1907), 77-94].

The theorem was extended to general k by Andersen, Studier, 44-55. Simplified
proofs of the generalized theorem, and further extensions, have been given by .
Andersen, PLMS (2), 27 (1928), 39-71, and Bosanquet, JLMS, 17 (1942), 166-73.

The necessity of the conditions (in the sense explained on pp. 130-1) was proved
for integral % by Fekete, M T E, 35 (1917), 309—24, and for general k by Bosanquet,
l.c. supra. :

There are a number of theorems which include both of Theorems 71 and 76,
especially for integral parameters. Thus Bosanquet, PLMS (2), 50 (1948), 295~
304, has proved that if k and I are integers, —1 < I < k, and p is any real number,
then, in order that 3, a,f, should be summable (C,1) whenever A% = O(nk+?), 4t is
necessary and sufficient that

Jn = o(nt-?7k), b np+k|Ak+):f"| < ©.

If, for example, p = 0, we obtain necessary and sufficient conditions that 3 a, fa
should be summable (C,I) whenever ¥ @, is summable or bounded (C, k). This
case of the theorem was stated without proof by Schur, JM, 151 (1921), 79-111
(106), and proved by Bosanquet, JLMS, 20 (1945), 39-48. It reduces to
Theorem 71 for I = k; and there is a variant in which Y a, is summable (C, k)
and f, = O(n%).

The special case I = 0, p = 0 is considerably older. The sufficiency of the
conditions in this case was proved by Bromwich, l.c. supra, for integral k, and by
Chapman, l.c., under § 5.5, generally; and the necessity by Kojima, TMJ, 12
(1917), 291-326. See Moore, Convergence factors, 45—6.

More recently Bosanquet, PLM.S (not yet published), has extended his theorem,
with the slightly narrower conditions 0 < I < %k, p > 0, to non-integral k& and I.

Theorem 76 was stated (at any rate for integral k) by M. Riesz, CR, 148
(1909), 1658-60; and proved, for general %, integral s, by Chapman, l.c., under
§ 5.5, 388-9. There is a proof for general k and s by Zygmund, BAP (1927),
309-31; and another by Ananda Rau, left incomplete at one point in his paper
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referred to under § 6.4, has been completed by Minakshisundaram, JIMS (2),
2 (1936), 147-55.

There are analogues of these theorems for ‘absolute summability’. The series

> a, is said to be absolutely surnmable (C, k), or summable |C, k|, if

> [CKA)—Ck(4)| < .
Thus summability |C, 0] is absolute convergence: the definition is Fekete’'s. We
shall not be concerned with absolute summability here, but theorems corre-
sponding to Theorem 71, and others of these sections, have been proved by
Bosanquet, Fekete, and Kogbetliantz. References will be found in Kogbetliantz
and in Bosanquet’s papers quoted here.

We add a remark about the argument in the text. We deduce Theorem 76
(for integral k& and s) from Theorems 47, 71, and 65. Alternatively, we may deduce
it from Theorems 47 and 66. It is trivial if k = 0. If £ > O then, in order that
2 n7'a, should be summable (C, k—1), it is necessary and sufficient that 3’ n—*4%~2
should be convergent, and this is easily proved by partial summation. The proof
is valid for non-integral k.

We can also vary the proof so as to avoid an appeal to Theorem 47.

§ 6.7. Theorems 77 and 78 were proved by Hardy and Littlewood, MZ, 19
(1924), 67-96: they are closely connected with others proved independently by
Knopp, ibid. 97-113.. Later, Andersen, PLM .S (2), 27 (1928), 39-71, and Hardy
and Littlewood, ibid. 327-48, transformed and generalized them in various ways.
See Kogbetliantz, 33.

§ 6.8. Itis, as usual, difficult to give precise references for the integral theorems.
For the equivalence theorem, see Landau, Leipziger Sitzungsberichte, 65 (1913),
131-8; for the analogue of Theorem 71, Hardy, MM, 40 (1910), 108-12; for the
points discussed at the end of the section, M. E. Grimshaw, JLMS, 9 (1934),
94-102.

§§ 6.9-10. The substance of the results here is due to Chapman and Knopp,
l.c., under § 5.5. :

§ 6.11. The bounded convergence of the series (6.11.1), and the uniform con-
vergence of (6.11.4), were proved, less directly, by Hardy, QJM, 44 (1913),
147-60. See also Landau, Ergebnisse, 68-9.

The most interesting case of Theorem 83, in which ¥ a@,2® = (1—2)#-1, is
equivalent to a theorem of M. Riesz, AUH, 1 (1923), 114-26. It is stated more
explicitly by Fejér, M Z, 24 (1925), 267-84 (269). Szego, MZ, 25 (1926), 172-87,
gives a different proof, based on Kaluza’s Theorem 22, and a generalization to
the case 8 > 0.

The proof of Theorem 83 is a little more complex when 8 = 0 than when
B < 0. Itis worked out in detail for the case a, = n¥” by Hardy and Rogosinski,
0QJ, 16 (1945), 49-58. ’

§ 6.12. The main result is due to Hardy, PLMS (2), 9 (1911), 126-44; but the
discussion there is not quite satisfactory for our present purpose, since it is based
on the restricted form of Riesz’s means of § 5.16 in which w assumes integral
values only. It is not difficult to modify the argument so as to take account of
non-integral w, and prove that the seriesissummable (R, n, &) when (k+1)a+B>1;
but then we need the troublesome Theorem 58 (proved in § 5.16 only for integral k)
in order to infer summability (C, k).



VII
TAUBERIAN THEOREMS FOR POWER SERIES

7.1. Abelian and Tauberian theorems. We shall be concerned
throughout this chapter with a set of theorems of the kind usually
called ‘Tauberian’. We used this word in §6.1, and gave a short
explanation of the nature of a Tauberian theorem. The theorems which
we prove here are more difficult, and our exposition of them more
systematic, so that it will be best to begin by a more precise definition
of the meaning of the word and of the word ‘Abelian’ with which it is
contrasted. It is convenient to use notations differing in some points
from those which we have used hitherto.

We denote the series and integral

(7.1.1) S a,, fa(t) dt

by S and J, and their values, when they are convergent, by s and j
(so that, for example, § = s means that > a,, converges to s). We write

8, = agF+a,+...+a,, Jt) = fa(u) du,

0

S@) = a,e™, Jy = f a(t)evt dt,

when y > 0 and the series and integral are convergent. By S = s(A)
or J = j(A) we mean that S(y) - s or J(y) - j when y — 0, and by
8 = s(C) or J = j(C) we mean that the series or integral (7.1.1) is
summable (C, 1) to s or j: we shall not have occasion to consider Cesaro
summability of any other order. We denote the hypotheses

S=s J=j S=s(A), J=j(A), S=s5(C), J=j(C)

by K, K', K,, K, K;, K
respectively.

and

An ‘Abelian’ theorem is, roughly, one which asserts that, if a sequence
or function behaves regularly, then some average of the sequence or
function behaves regularly. Thus ‘if s, — s then

o = SotS1t et S
n n-4-1

or ‘K implies K’ and its integral analogue ‘K’ implies K;’ are Abelian.

S’
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Abel’s theorem on the continuity of power series is an Abelian theorem
(and it is from this that the name is derived). For

2
ayta, xta,z?+... = so_ll—jf:i;:i_l—
when 0 < x < 1and the series are convergent; the right-hand side is a
certain average of the s,; and Abel’s theorem asserts that this average
tends to s, when « — 1, if s,, itself tends to s. Generally, any theorem
asserting the regularity (§3.2) of a method of summation is an Abelian
theorem.

The direct converse of an Abelian theorem is usually false. It is
obvious, for example, that, if the regularity theorem for any method of
summation is reversible, then the method is trivial in the sense that
it will sum convergent series only. There are, however, many important
theorems which may be called corrected forms of the false converses of
Abelian theorems. Thus we saw in §6.1 that the false theorem ‘o, — s
implies s, - §°, or ‘K, implies K’, becomes true if we subject s, to an
appropriate additional condition, such as a, = O(n~'). Such theorems
are called ‘Tauberian’, after A. Tauber, who first proved one of the
simplest of them; and the supplementary condition is called a ‘ Tauberian
condition’.

The most important Tauberian conditions with which we shall be
concerned here are

(0) a,=o(rn7), (0) a,=0@"), (0 a,>—Hn,
(OR) Ay, < H n—l,
and their integral analogues
(©) a@)=o(t), (0) at)=0@"), (07) at)>—Ht?,
(OR) a(t) < HtL.
Here H is a positive constant, and the conditions on a(t) are supposed
to be satisfied for large t. The behaviour of a(t) for small ¢ will be

irrelevant; we shall usually suppose only that it is integrable down to 0.
We shall also use two generalizations of (0) and (0'), viz.

(w) a,+2a,4...+na, = o(n),

t
(@) f ua(u) du = o(t).
0

7.2. Tauber’s first theorem. The first of Tauber’s theorems was

THEOREM 85. If > a, is summable (A) to sum s, and a, = o(n-1),
then > a, converges to s
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or ‘K, and o imply K’. The integral analogue is ‘K’y and o’ imply
K”’. We call this Theorem 85a, and use this notation for integral
analogues generally.

We begin by proving Theorem 85a, and deduce Theorem 85 as a
corollary: we might also prove Theorem 85 directly by an argument
running parallel to that used in the proof of Theorem 85a.

It is plain that (o’) implies the absolute convergence of J(¥) for y > 0.
Also :

J G)~J(y) = :fla(t) dt — fw e~vig(t) dt

1/y @

= f (1—e~Y)a(t) dt — f eva(t) dt = P—Q;
0 1y
1/y 1/y

P = f O(yt)o (%) dt=y f o(1)dt = o(1),

gince 0 < 1—e~¥ < yt; and

Q =17f e-”‘o(%) dt = o(ylf eV dt) = o( joe—“ du) = o(1).

Hence j(1/y) = J(y)+o(1) - j when y — 0, i.e. j(t) > j when ¢ - co.
To deduce Theorem 85 we take a(t) = a,, for n < ¢t < n+1. Then
n+1
1

J(y) = 2 a, f eVdt = 372 an{e-‘nv_e—(n+1)y}

n
_1—e? iy ] —e-¥
== E G =—y S(y),

so that S(y) -> s implies J(y) - s. Also a, = o(n~') implies a(t) = o(t~1);
8o that Theorem 85 follows from Theorem 85a. ,

7.3. Tauber’s second theorem. In Tauber’s second theorem the
hypothesis o is replaced by w. This changes the character of the
theorem; for the convergence of 8 implies w, by Theorem 26, so that
w is a necessary condition for K.

TeEOREM 86. If Y a, is summable (A) to s, then w i3 @ necessary and
sufficient condition for its convergence to s.

The integral analogue is ‘if K is true, then o’ is necessary and suffi-
cient for K”. It will be convenient, here and later, to prove the main
theorem and its integral analogue together, as special cases of a theorem
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concerning Stieltjes integrals. We take for granted the definition and
elementary properties of the ‘Riemann-Stieltjes’ integral

T
[ 10 datt),

a
where (a, T) is finite. In particular we assume that the integral exists
when one of the functions is continuous and the other of bounded
variation, and that

(7.3.1) f 1) dot) = ST —f(@)a(a)— f oft) df()-

We shall always suppose that «(?) is of bounded variation and that
a(0) = 0. We shall also use the equatlon

(1.3.2) f 10 dott) = f 10 ap,

¢
where B(t) = f g(u) da(u), f and g are continuous, and g > 0.
We define the Stieltjes integral over (a ) by

f £(t) dat) = lim j 1) de).

The integrals with whlch we shall be concerned are of the type

o]

(7.3.3) I(y) = f e da(t).

0
We shall always suppose I(y) convergent for all positive y, in which
case a(t) = o(e¥) for all such y. If ot) is absolutely continuous, and
o’ (t) = a(t), then I(y) reduces to J(y). If «(t) is the step-function with
jumps a, at the points ¢ = n,} then it reduces to S(y). Thus any
Abelian or Tauberian theorem concerning I(y) will contain one for J(y)
and one for S(y).

THEOREM 87. If aft) > L when t — 00, then I(y) is convergent for y > 0,
and I(y) > ! when y - 0.

For r
I(y) = lim { [en da(t)}

T—

0 T ©
= lim {e—vT o(T)+y f e~via(t) dt} =y f e~Via(t) dt,
T— F °
and so I(y) - lim ly f evdt =1
v—>0 " 3§

t And o(+0)—a(0) = o(+0) =
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Next, we prove a theorem which includes Theorems 85 and 85a.

THEOREM 88. If I(y) is comvergent for y > 0, and I(y) -1 when
y —> 0, then a necessary and sufficient condition that f da(t) =1, i.c. that
o(t) > L when ¢t — o0, s that

(7.3.4) B(t) = f w da(u) = oft)
when t — co. °

First, the condition is necessary because

t
B(t) = ta(t)— [ alu) du,
0

t

A a(t)—%fcx(u) du—>1—1=0
if at) > 1. ’

Secondly, if (7.3.4) is satisfied, then (7.3.2) and (7.3.4) give

i 4 ¢
aft)—afl) = f datw) = | B _BO_gayy Jggz_) i
1 1 i

¢
du

= o(l)—{—O(l)—}-o(f _'J) = o(logt) = o(¢)
1
¢
and so y(t) = j (u41) da(u) = B(t)+alt) = oft).
Now °

vda(t) = [ % dity = o [ 28 eut f V) pm
fe v do) _jt—l—l dy(t) = yftHe wit + | Hlgemar
The first term on the right is o(y J‘ e~¥ dt) = o(1), and so
—ut I y(t) ¢

fﬁ(t)e vdt = f (t+1)2e v dt - 1.
But 8(t) = o(t~1), and therefore, by Theorem 85 a, f 8(t) dt converges tol.
Finally,

_ dy(t)_f ¥(t) _J’ Nt — 1

fda(t)_ 0 [ Zoha = [sya=1.

Thus (7.3.4) is a sufficient as well as a necessary condition. Specializing
a(t) as stated, we obtain Theorems 86 and 86a.
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7.4. Applications to general Dirichlet’s series. (1) If A, > 0,
Api1 > A, A, > 00, and «f) is a step-function with jumps a, at the
points A, then
(7.4.1) Iy) =3 a,e V™
and this specialization of «(¢), in any of our theorems, leads to a theorem
about such a Dirichlet’s series. Thus Theorem 87 leads to the regularity
theorem for the (A,)A) method of summation. We shall not consider
the properties of the general series (7.4.1) in any detail here, but we
illustrate our remarks by proving the Tauberian theorem for Dirichlet’s
series which corresponds to Theorem 85.

THEOREM 89. If S(y) = 3 a, eV is convergent for y > 0; S(y) > s
when y — 0; and :
(7.4.2) a, = o(A————”_AA“‘l);
then 3 a, converges to s. "

We apply Theorem 88, taking

t) = .
aff) A,.Z<tan
Then I(y) = S(y) > s. Also, if A, is the last A, less than ¢, then

i
Blt) = [uda(w) = 3 Ma,
= Noag+ 3 00u—-s) = o(},) = oft).

Thus the conditions of Theorem 88 are satisfied, and «(t) > s, i.e.
>a,=s ;

(2) The condition (7.4.2) is, roughly, the stronger the more slowly
A, tends to infinity: thus it is @, =o(n~!) when A, =n, and
a, = o{(nlogn)~1} when A, = logn. A divergent series which satisfies
the first condition cannot, after Theorem 85, be summable (A), but it
may well be summable (A,logn). The latter method is not, in the
language of §§ 3.8 and 4.12, so ‘powerful’ as the A method, since it can
apply only to series > a, such that > n-va, is convergent for all posi-
tive y. Thus it is not applicable to such a series as 1—24-3—...; but,
as is shown by Theorem 28 of § 4.8, it is at least as effective within its
limits of applicability; and the example of the series > n~'-% shows
that it is sometimes more so (§ 7.9).

7.5. The deeper Tauberian theorems. We pass now to a series
of theorems of a more difficult character, of which the best-known and
in some ways the most typical is
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THEOREM 90. If ¥ a, is summable (A) to sum s, and a,, = O(n-1), then
> a, converges to s.

That is to say, ‘K, and O imply K’. This theorem is a direct
generalization of Tauber’s theorem 85, the condition o being replaced
by O. Some prefatory remarks will be useful.

(1) If ¥ a, is summable (C, k), for any k, then, by Theorem 55, it
is summable (A). Hence Theorem 90 includes Theorem 63 of Ch. VI.
Generally, any Tauberian theorem for A summability includes one for
(C, k) summability, though an independent proof of the latter is usually
easier.

(2) There are naturally variants of the theorems of §§ 7.2—4 in which
‘o’ is replaced by ‘O’ in both hypotheses and conclusion, and the proofs
of these are trivial variants of those of the ‘o’ theorems. Thus Theorem
85 has the variant

‘if 8, = O(1) (A), 1.e. if S(y) is bounded when y — 0, and a,, = O(n-1),
then s, = O(1)’,
and the proof, being a slightly simpler variant of that of Theorem 85,
need not be set out in detail. We shall sometimes use such theorems,
and shall indicate them by an [O], Theorem 85 [0], for example, being
the theorem just stated; but we shall take the proofs for granted. The
significant theorems of the next sections will be those in which, as in
Theorem 90, ‘O’ occurs in one of the hypotheses but ‘o’ in the conclusion.

Similarly an integral analogue, Theorem X a, will have an ‘O’ form,
Theorem Xa [O].

(3) We shall sometimes use one-sided order conditions of the types
a, > —Hd¢(n) or a, < H¢(n), where a, is real and H and ¢(n) are posi-
tive. We shall write these as a, = Or{$(n)} or a, = Og{é(n)}. Thus
a, > —Hn! or a, = Oy(n"1) is the condition O of §7.1. Actually,
only Oy, will occur in our theorems, since a theorem with an O may
be deduced by a change of sign from the corresponding theorem with O;.

We now state a series of theorems which we shall consider together
with Theorem 90.

TueorEM 91. If 3 a, = s(A), a, 15 real, and a, = Og(n?), then
Sa,=s. '

THEOREM 92. If ¥ a, = s(A), and s, = O(1), then Y a,, = s(C,1).

THEOREM 93. If ¥ a, = s(A) and s, > 0, then Y a, = s(C, 1).

THEOREM 94. If Y a, = s(A), a, is real, and s, = Or(1), then
>a,=s(C1l).
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THEOREM 95. If
(1.5.1) f@) = 3 apan ~ 2
when x - 1, and a, = O(1), then s, ~ Cn.

THEOREM 96. If (7.5.1) is true, and a,, > 0, then s, ~ Cn.

THEOREM 97. If (7.5.1) is true, a, is real, and a, = Or(1), then
8, ~ Cn.

In the last three theorems (7.5.1) is to be interpreted as (1—x)f(z) -0,
and s, ~ Cn as s, = o(n), when C = 0. Since 1—e~¥ ~ y when y - 0
(7.5.1) is equivalent to S(y) ~ Cy~1.

All these theorems are of the same depth, and it is comparatively
easy to deduce any one of them from any other: the most interesting of
these deductions will be found in§§ 7.7 and 7.8. In some cases the deduc-
tions are quite trivial. Thus Theorem 93 is obviously a special case of
Theorem 94, and Theorem 96 of Theorem 97. Theorems 90, 92, and 95
are special cases of Theorems 91, 94, and 97 respectively when a, is
real, and may be reduced to special cases of them in any case by con-
sidering real and imaginary parts separately. Thus we have only to
prove Theorems 91, 94, and 97.

Next, Theorem 94 is a corollary of Theorem 97. For if the conditions
of Theorem 94 are satisfied, then

and s, = O(1). Hence, assuming the truth of Theorem 97, and apply-
ing it to 3 s, ", we obtain

So+81F o F8, ~ 80
orYa,=s (C1).

Finally, while Theorem 96 is a special case of Theorem 97, the latter
is a corollary of the former. For if the conditions of Theorem 97 are
satisfied, and a, > —H, say, then b, = a,+H > 0 and

3 b = S apant o~ O
Hence (assuming Theorem 96) we have
bo+b,+...+b, ~ (C+H)n,
and therefore s, ~ Cn.

Thus it is enough to prove Theorems 91 and 96. The set of integral
analogues of the theorems may be reduced in the same way. Actually,”
we shall prove Theorems 96 and 96 a directly and deduce Theorems 91
and 91a from them.

1—x
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7.6. Proof of Theorems 96 and 96a. We shall prove Theorems 96

and 96a as special cases of a theorem concerning Stieltjes integrals.
THEOREM 98. If a(t) increases with t,

I(y) = [ e da(t)
is convergent for y > 0, and I(y) ~ Cy~1, where C > 0, when y — 0, then
at) ~ Ct.
We need two lemmas.

THEOREM 99. If g(x) is real, and Riemann integrable in (0, 1), then
there are polynomials p(x) and P(x) such that p(x) < g(x) < P(x) and

@

[ (P@)—p@)} dz = [ eH{Ple)—ple )} dt <.

0

(i) Suppose first that g is 1 in («, ), where 0 <o << 1,and 0
outside (a,8). We can plainly find a continuous At such that

g<h, J’(h—g)d¢<e..

By Weierstrass’s theorem, there is a polynomial @ such that |A— @] <e.
If P= @Q-+¢, theng < h < Pand

[P—gda< [ (P—@)dx + [ 1@l dz + [ (h—) dz < 3e.

Similarly there is a p such that p < g and f (g—p) dxr < 3¢; and p'and
P satisfy the requirements of the theorem (with 6e for €). Thus the
theorem is true for this special g.

(ii) It follows by multiplication and addition that the theorem is
true for any finite step-function.

(iii) If g is any Riemann integrable function, then there are finite
step-functions g, and g, such that

n<9<g» [@—g)dw<e.

We associate polynomials p;, P, with g,, and p,, P, with g,, in the
manner prescribed by the theorem. Then p; <g < B,

[Pz <e  [@—p)dz<e
and [ (B—p) do = [{(B—g)+@—g)+@:—p)} dz < 3e,

which proves the theorem.

+ Which may be g in (a, ). In what follows integrals with respect to z, without
limits shown, are over (0, 1), and those with respect to ¢ over (0, o).
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In our second lemma we require a little more knowledge of the
Stieltjes integral than we have presupposed up to the present. We
assume that, if f and g are of bounded variation, but not necessarily
continuous, in a finite interval, and have no common points of dis-
continuity, then each is integrable with respect to the other. The
formula for partial integration is still valid, but we shall not need it.
Integrals up to co are defined as limits, as in § 7.3.

THEOREM 100. Suppose that «(t) increases with t, that I(y) is convergent
for y > 0, that 1(y) ~ Cy-1, and that g(x) ts of bounded variation in
(0,1). Then

x(@) = [ evigle) dufz)

exists for all positive values of y except values T/w, where w is a discontinuity
of a and 7 a discontinuity of g(e™); and

(1.6.1) xto) ~ % [ eotet a

when y — 0 through any sequence of positive values which excludes these
exceptional values.

The values of y excluded are those for which g(e—%) and «(f) have
common discontinuities: y(y) is not defined for such y. Since the w and
the 7 are at most enumerable, we exclude at most an enumerable set
of values y; of y.

Since a function of bounded variation is Riemann integrable, we can,
by Theorem 99, choose polynomials p and P so that

P<g<P, [eHPlh)—plehdi<e
Then f e~p(e) dt < f e~ig(e) dt < f e~tP(e7) dt;
and f e~vip(e) daft) < f evig(e) da(t) < f eV P(e~v) daft),
for y # y;, because «(f) increases with £. Now

f e~Vig—t do(t) = j e~ do(t) ~ (_71,_—}—01—)1/ = g f e~te—" d,

and therefore
f e~V P(evt) dat) ~§ f oP(e) di.
Hence, if y - 0 through any sequence free from values y,, we have

(7.6.2) limy f e~vig(e—v¥) do(t) < limy f e~VLP(e~v) da(t)
y—0 ¥—0

=C j etP(e-t)dt < C f e~g(e~t) dt + Ce.
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Similarly, using p instead of P, we obtain
(7.6.3) lim y f e~vig(e—v!) da(t) > C f e~g(e~t) dt — Ce;

y—0

and (7.6.1) follows from (7.6.2) and (7.6.3).
We can now prove Theorem 98. We suppose, as always, that «(0) = 0.
We take
gle) =21 (e'<z<)), g) =0 (0<z<e),
8o that g(e¥) = et for 0 <t << 1 and g(e”) = 0 for ¢t > 1. Then

W) =  evte datt) = | at = ()
X ) ) ; ik

@© 1
Also eg(et)dt = | dt = 1.
! !

Hence, by Theorem 100, a(y—1) ~ Cy~* when y - 0, i.e. a(f) ~ Ct when
t — 0o, exception being made in either case of a certain enumerable set
‘of values. Here there is just one 7, viz. 1, and the values of ¢ excluded
are the discontinuities of «(). Thus o) ~ Ct when t —oco through
points of continuity of «(¢). Finally, since «(t) increases with ¢, it is true
without reservation.

Theorem 98 includes Theorem 96 and its integral analogue Theorem
96a. If «(t) is a step-function with jumps a, > 0 for ¢ = n, then

I(y) = S(y) = X ape™,
and S(y) ~ Cy~! implies s, ~ Cn. This is Theorem 96. Similarly, if
a(t) is absolutely continuous, and «'(t) = a(t), we obtain Theorem 96 a.
7.7. Proof of Theorems 91 and 91a4. We can now prove a theorem
which includes Theorems 91 and 91a. We require two further lemmas,
THEOREM 101. If f(y) is twice differentiable for positive y, and
(7.1.1)  fy) -1 : (1.1.2)  f(y) > —Ky2,
when y — 0, then yf'(y) — 0.

The theorem is one of an important type, and it will be instructive
to give two proofs.

(1) If y and y+ 7 are positive, then
(7.7.3) Jy+0)—fy) = 2of' @)+ (y+67),
where 0 < § < 1; or

(7.7.4) £ =&’ji;:ﬂ@—-%nf”(y+9n)-
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We choose 8 so that 0 < 8 < 1 and
K3
2(1-3)

and apply (7.7.4) with o = 8y and » = —3y.
First, taking 5 = &y, (7.7.1), (7.7.2), (7.7.4) and (7.7.5) give
, 1 K3 1\ K& 1\ e
50 <ofgy) + s ram < )+ <ol 5
and so limyf'(y) < e
Secondly, taking n = —8y, they give

and so limyf'(y) > —e.
Hence yf’(y) > 0.
(2) We observe first that if ¢(y) = f’'(y)—Ky~! then

¢'y) = f"(y)+Ky=2 > 0.
Thus ¢ is an increasing function which has a finite derivative ¢’ for
each y, and is therefore the integral of ¢'.1 Hence f’ is the integral of f”.
If yf'(y) 4> 0, then one or other of the inequalities

(7.7.6) f'y) > Hy?,  f'ly) < —Hy™?

is true for some positive H and a sequence of values of y tending to 0.
Let us suppose, for example, that the first inequality (7.7.6) is satisfied
for the values y = Y. If

(7.7.5) <e

§=H2K, Y <y<Y437,
then )
" H d
o) = fWHfﬂmm H ok
u
Y
Y+8Y
JH_ . (du_H Ks_H,
Zy— E=Y"T7 3

and therefore

Y +9Y H Hz
.MMH%E=Jme > 5587 = 1%,

which contradicts (7.7.1). Similarly, considering an interval

we obtain a contradiction from the second inequality (7.7.6). Hence

F'(y) = o(y™).

t See, for example, Titchmarsh, Theory of functions, 368.
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We can now prove

TaEOREM 102. If (i) I(y) is convergent for y > 0, and I(y) — l when
y - 0; (ii) there is a function B(t) such that B(0) = 0, B(t) ~ t, and

t
(7.1.7) w(t) = LB(t)+ j w do(u)
i}

is, for some positive L, an increasing function of ¢; then a(f) — L.

It follows from the definition of 8(¢) that it is the difference of two
bounded and increasing functions, and therefore of bounded variation,
in any finite interval (0, T').

We observe first that

1
. vt =y [ e ~ vt ==
(7.7.8) fevd,e(t) yfevﬁ(t)dt yftev b=
(7.7.9) f e~V dB(t) = f eV (yt—1)B(t) dt
NyJ"tze—wdt_fte—wdt= 5_2_52=%,

I'y) = — J tevida(t), I'(y)= j 12e~vt do(?).
Hence, first,

I'"(y) = f te~vt dy(t)— L f tevidB(t) > —L f te—vt dB(t) > —ﬁ-f ,
for an appropriate M. It follows, by Theorem 101, that I'(y) = o(y™").
But

I'y) = — [ e dyO)+L [ e dple);
and therefore, by (7.7.8),
L
7.7.10 e dy(t) ~ =.
( ) f ( m

Since y(t) increases, it follows from (7.7.10) and Theorem 98, that
y(t) ~ Lt; and so that ‘

t
(7.7.11) f u dafu) = y(t)— LB(t) = o(t).
o

Finally, it follows from (7.7.11) and Theorem 88 that «(t) 1.
This proves Theorem 102. If «(t) is the step-function of §7.4 (1), with
A, = 7, and na, > —H, we may take

=3 1.
Then YO = LAO+ 3 nay = 3 (na,+1)

increases with ¢ if L > H, and we obtain Theorem 91. If «(?) is
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absolutely continuous, «'(t) = a(t), and ta(t) > —H, then we may take
B(t) = t, and obtain Theorem 91 a similarly.

We make one further specialization of Theorem 102. Suppose that
A, <Ay, A, —> 00 and

(7.7.12) Msr ~ Ay

that «(t) is the step-function of § 7.4 (1), and that
(7.7.13) ' a, > —H@A,—A,,1)/A,.
It BB =3, O

(with A_; = 0) and L > H, then
t
v(t) = LBO+ [ wda(w) = 3 {LOu—M-1)+2ndn}
0 <

is an increasing function of ¢. Also B(t) ~ Ay, where N is the last value
of n for which A, < ¢; and (7.7.12) then shows that 8(t) ~ ¢. Hence the
conditions of Theorem 102 are satisfied, and we obtain

THEOREM 103. If ), tends to infinity so as to satisfy (7.7.12), a,, satisfies
(7.7.13), and S(y) = 3, a, e™? —> s when y - 0, then 3, a,, converges to s.
This theorem corresponds to Theorem 91 as Theorem 89 corresponds to
Theorem 85; but there is an additional condition on A,, viz. (7.7.12). This
restriction is essential; the proof fails without it, since it is then no longer true
that B(¢) ~ ¢; and the theorem itself becomes false. Suppose, for example, that
A = 2M+2778, Agmpr = 2™H,
and a, = (—1)*. Then a, > 0 if n is even. Also

Aami1—Aam _ 2m+l—22;:2—m_2 >1-1—-3>4

Aamit

so that Qa1 = —1> _4(’\2m+1_A8m)/A2M+1'
Thus (7.7.13) is true with H = 4. Also

Sly) = eW— Y e Y(1l—e 2" W) = e WL+ Oy X 2™ %) = 14+0(y) > 1;
but 3 a, is not convergent.

There is a difference in this respect between Theorem 103 and the more direct
generalization of Theorem 90, viz.

TazoreM 104. If S(y) = 3 a,e™V — s and a, = O{(Ay—Ay_1)/As}, then 3 ay,
converges to 8.

Here it is not necessary to assume (7.7.12).F

7.8. Further remarks on the relations between the theorems
of §7.5. There are various methods of proving the theorems of §7.5,
the simplest being Karamata’s, which we have followed here. The
original method of Hardy and Littlewood involves a technique of
repeated differentiation, about which we shall say something in § 7.12.

1 See the note at the end of the chapter.
4780 M
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There is also the method of Wiener, which is the most powerful and
the most general, but also the most difficult, since it depends on deep
theorems in the theory of Fourier transforms. This we leave to Ch. XII.

Each method involves a characteristic idea, leading to one of the
theorems from which the others are deduced by more elementary
devices. Thus Karamata’s idea is embodied in Theorem 100, and the
Tauberian theorem to which it leads naturally is Theorem 96. The
method of Hardy and Littlewood leads to Theorem 90 or Theorem 96,
according to the manner of its use; while that of Wiener leads most
naturally to Theorem 92.

It is therefore interesting to examine the relations between the
theorems more closely. We show here (i) how to deduce Theorem 92
from Theorem 90, and (ii) how to deduce Theorem 96 from Theorem 92.

(i) Deduction of Theorem 92 from Theorem 90. We suppose that the
conditions of Theorem 92 are satisfied and, as we may without real loss
of generality, that a, = 0 and s = 0. We write

wy =0, w, = a,+2a,-+...4na, (n>0), v, = 7—&(71‘1—15,
so that
w, = (n+1)s,—sy—8—...—8, = O(n), v, = O(n1);
and fl@) =3 a,a", g(x) = 3 v, antl
Then

g@)+(1—2)g'(x) = 2 n(::_"‘_l)xml_l_ Z Yn Z %xnﬂ

= 25T 2t = 2 e = Sy

—ol 1 :
e
and therefore, integrating, we have
1 .
'iq(Tx:)v = 0('1—:‘5), g(x) = o(1). ‘
Since g(z) = Y v,a"* = o(1) and v, = O(n?), 1t follows from
Theorem 90 that Y v, converges to 0. But

z,v =§(}____1__)w =iwn—wn—l_ Wy
& ~\n nt1 " - n N+1
' = sy— Wy _ St +8N.
N+1~ = N+1
Hence sy+38,4...+sy = o(N), i.e. 3 a, = 0(C,1).

1 The summations running from 1 to co.

Hence

g(z)+(1—2)g'(z) = o(1), 3% {2(_351}

1—2
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(ii) Deduction of Theorem 96 from Theorem 92. We suppose the hypo-
theses of Theorem 96 satisfied. Then, if » > 1, we have

1\ < 1\m 1 |
< —— —— —_—— = .
8, < (1 n) OE am(l n) < 4f(l n) O(n)
We write £, = s,/(n+1), so that ¢, = O(1). Hence, if

b — ¢ l_t — Ysn+1 Sy . an+1 ‘g'n,
n — "n+ n —

n+2 nt+l  nt2 (n+l)(n+2)

then
(7.8.1) botby+...4-by = 13 —8 = O(1),
(7.8.2) o> —— o~ H

>
(n+1)(n+2) n
for an appropriate H. Next,

oS 5o L samat [ (Sam
R at: _o_cf(zs,,t)dt_xfl_ (3 a, %) dt
1} (1}

) o c
f it~ [ S~ e
0
and so

(7.8.3) > by at = (8—to)+(Ea—1y) x4 (E3—E)2%+...
to , 1—x n
—539+T Z t,a® > C—t,.

From (7.8.3), (7.8.1), and Theorem 92 it follows that 3 b, = C—t, (C, 1),
i.e.

(1.8.4) | t, — t,,+"§1b,,, > C (C,1).

Finally, from (7.8.4), (7.8.2), and Theorem 64, it follows that ¢, - C,
i.e. that s, ~ Cn.

7.9. The series > n-1-%. We have seen in §6.11 that the series
> n~1-%, where c is real and not 0, is not convergent, and that in fact

n—ie
8y = ——= +140(1),

where [ is independent of n.} Since a, = O(n-1), it follows from

t We shall identify I as {(1+ic) in Ch. XIII.
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Theorem 90 that > a, is not summable (A): that it is not summable
(C) followed from Theorem 63. It is summable (A, logn), since
3 notveie = [(14y-ic) > {(1-ic).

Theorems 63 and 90, and the other theorems of §7.5, have many
applications in the theory of Fourier series. It is known, for example,
that the Fourier series of any integrable f(t) is summable (A), or (C, 1), at
any point of continuity or jump of f(t). If f(t) is of bounded variation,
then its Fourier coefficients are O(n-1); and it then follows, from
Theorem 90 or Theorem 63, that the series is convergent for all ¢.

7.10. Slowly oscillating and slowly decreasing functions. We
can generalize Theorem 91 further by the use of the ideas of § 6.2.

TaEOREM 105. If (i) I(y) = f e¥ du(t) is convergent for y > 0, and
I(y) — L when y - 0; (ii) «(t) s slowly decreasing; then «(t) — 1 when t — 0.

THEOREM 106. If Y a, = s (A), and s, is slowly decreasing, then

Sa,=s.

It is convenient to suppose, as plainly we may, that «(f) = 0 in an
interval (0,7). We need a lemma.

TurorEM 107. If a(t) is O in an interval (0, 7), and of bounded variation
wn any interval (0, T'), and I(y) is convergent for y > 0, then,if p > q > 0,

@

f ofpt) —a(gt) oVt Jt — j(ql(u)d
¢ %
0

74
The integral for I(u) is uniformly convergent in any interval

0 <v<<u< U, and oft) = o(e) for all positive e. If 0 < v < U, then

U U <)
f%duz f%"‘fe—utda(t)

0
© ©

=ojda(t)fe—}“ ofa(t)( f ) :

v
=]

=jat)dtfe—“du_fe_ == 7 (t) dt.
0

v 0

Finally, taking v = y/p, U = y/q, we obtain
i ~vif
fe 7 (e dt — fﬁﬁa(t) dt

_ f e pt) dt — f _a(qt)d [ "Lp‘)_; gl - gy,
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Passing to the proof of Theorem 105, we may suppose [ = 0. Since
a(t) is slowly decreasing, and bounded in any finite interval of positive £,
we have
(7.10.1) ———“(pt)t“"(qt) > —g
for any fixed p and ¢ with 0 << ¢ < p and an appropriate H.T Since
I(y) o,

© vig
(7.10.2) f ‘ﬁ?f).:“—(q‘)e—w dt = f 1) gy, o(logﬁ) — o(1),
0 v/p * 1
for any fixed p and ¢ with 0 < ¢ < p; and from (7.10.1) and (7.10.2)
it follows, by Theorem 91 a, that

f A(pt)—odgt) 4 .
t

Hence

»T T
(7.10.3) f#m: f"‘wdt—w

qaT 0
when 7' — co0.

If «(t) does not tend to 0, there is a positive M such that one or
other of the inequalities «(f) > M, at) < —M is true for a sequence
of values T tending to co. Let us suppose, for example, that the first
inequality is true for { = 7. We take ¢ = 1, and choose p > 1 so that
a(u)—a(v) > —34M for v > vy, v << u << pv. Then, for sufficiently large
t = T, we have

ou) > (T)—3M > M (T < u < pT);
T
and therefore f Mal’u, > 3 Mlogp,
P u
in contradiction to (7.10.3).

Similarly (considering an interval to the left of a 7') we obtain a
contradiction from «(7") << — M, and the theorem follows. Finally we
obtain Theorem 106 by supposing «(¢) an appropriate step-function.

7.11. Another generalization of Theorem 98. We have so far
proved our theorems in their simplest forms, ignoring the many
generalizations which involve additional functions or parameters. We
now illustrate these by an important extension of Theorem 98. We

1 See§6.2.
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suppose throughout this section that ¢(x) is positive and increasing
for x > x,, and tends to infinity with z; and that

(7.11.1) ¢(x) = x°L(x),
where o > 0 and
(7.11.2) L(cx) ~ L(x)

for every positive ¢. Thus z°(log z)" is a possible form of $(x), for z > 2,
ifo > 0, r real,or o = 0, 7 > 0.

TarEOREM 108. If oft) increases with t, I(y) = [ e~V da(t) is convergent
Jory > 0, and

(7.11.3) Ity) ~ $(y™)
when y —> 0, then k
(7.11.4) a(t) ~ P(‘ﬁ(ﬂl)
when t — 0.

We suppose first that o > 0, when the proof is a simple generalization
of that of Theorem 98. We write
I1\e-1
p(x) = (logi) 0<z<l),
and use

THEOREM 109. If g satisfies the conditions of Theorem 99, and o > 0,
then there are polynomials p and P such that p < g < P and

(7.11.5) f {P(x)—p(@)}p(x) de = J’ e~to-Y P(e~)—p(e)} dt < eT'(o).t

TrEOREM 110. If o(t) and I(y) satisfy the conditions of Theorem 108,
and g(x) 18 of bounded variation in (0,1), then

(7.11.6) x(@) = [ evigle) det)

exists for all positive y except those specified in Theorem 100, and
1 1

(7.11.7) x() ~ T%_)"S(i) f e~9-1g(e~) dt

when y — 0 through any sequence free from these exceptional values.

- The proof of Theorem 109 is a straightforward generalization of that
of Theorem 99, the changes necessitated by the presence of the weight

+ As in § 7.6, integrals with respect to x, without limits, are over (0, 1), those with
respect to ¢ over (0, o).
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function p(z) being almost trivial. If g is 1 in («,8) and 0 outside, then
there is & continuous 4 such that

g<h  [(—gpds <e|[pds=el(o),

and a polynomial @ such that |Q—h| <e. IfP = Q+e theng<h <P
and

[ (P—gpde < [ (P—@pdz + [1Q—hlpds + [ (h—g)p dz < 3¢T(o).

Similarly we can determine p so that p < gand f (9—p)p dz < 3¢I'(0),
and the result (with 6e for ¢) follows. Thus the theorem is true for this
g, and so for any finite step-function. _

The final stage of the proof needs a little elaboration. We write
M = max|g|, and determine ¢ and ¢’ so that 0 < £ < ¢ < 1 and

£ 1
(7.11.8) 2pr dz < I'(0), 2M f p dx < eI'(a).
0 &

We can then find finite step-functions g, and g, such that
—U<g<9g<g<M

¢
o eI'(0)

’ d - ol (Y et ?
mEsend o) b < o o)
from which it follows that

.
(7.1L.9) ! (ga—g)p dz < eT(0).

If we define g, as —M and g, as M in (0,£) and (£, 1), then g, < g < g,
throughout (0, 1), g,—¢, < 2M, and

(7.11.10) f (g2—gu)p dz < 3€T(0),

by (7.11.8) and (7.11.9).
Finally, since g, and g, are finite step-functions, there are polynomials
p and P such that p < g, < g <9, < Pand

[ P=gdpdz <T(@), [ (gr—plpdz < eT(o).

It then follows from (7.11.10) that [ (P—p)pdz < 5el'(0), and this
completes the proof of Theorem 109.

t pis monotonic in (0, 1) and tends to infinity at one end or the other, except when
=1,
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Passing to Theorem 110, we have

R

Gy ~ UL l)

= (n+1)'“¢@) = T,(l—o)(ﬁe) f e“e~mio1 dt,

for fixed n, when y — 0. From this it follows that

= (n41)~ “’Ll

(7.11.11) j e-uiQ(e-vl) da(t)~i,—(lo—)¢(§/) f e-tto-1Q(e~) dt

for any polynomial @.
There are polynomials p and P such that

p<g<P, |[etH{Plet)—pleh}di <o),
and a fortior: f e9-Y P(e~)—g(e)} dt < I'(o).

Hence, if y - oo in the manner prescribed in Theorems 100 and 110,
— 1 1
lim——— J e~Vig(e—') da(t) < lim——— '[ eV P(e~ vty da(t

1
eo-1P(e~) dt < —— | et g(e™) dt +e.
= 1 | RN < g [ etgte e
Similarly

e~Vg(e V) da(t) > —— | etog(e™) dt —e,

lim 1 J 1

—¢(1/y) T(o)

and these two inequalities prove (7.11.7).
We can now prove Theorem 108 (when ¢ > 0). Choosing g as in the

proof of Theorem 98, we obtain

f e~vig(e¥) do(t) = ],uda(t) = aC)
0

@

1 0— i — _]_‘_ o-1 —_ 1 .
mjm 19(e) dt = F(c)oft & = vy

0
and the theorem follows from Theorem 110, since «(t) increases with ¢.
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The argument fails when o = 0 and ¢(y~) = L(y') >co. In this
case we replace Theorem 110 by

THEOREM 111. If «(t) increases with t,

1) = [ e datt) ~ L()

and g(x) is continuous in (0, 1), then

x) = [ e¥g(e-s) dat) ~ L{Z}o(0).

45)

and so f e ¥Q(ev) da(t) ~ L(?%) Q(1)

—~ylo—nyt ~ 1 } ~
Here fe vig—nvt do(t) L{(n—{—l)y

for any polynomial Q. Since g is continuous, there are polynomials
p, P such that p <g < P <p-+efor 0 <z <1 Then

[ evgle-v) da(t) < [ e¥P(e) dat),

- 1 -y, —ui o
yrar j e-vg(e~4) d(t)

< limz-(—;/—?;—) J' e-P(e-v) da(t) = P(1) < g(1)+e,

1
imi im— ~vig(e—Vt —
and similarly lim /) f e~vig(e~¥) da(t) > g(1)—e.

This proves Theorem-111. We pass to the proof of Theorem 108,
with ¢ = 0. We cannot now choose g as in the proof of Theorem 98,
that g being discontinuous. We take

so) = 3(1-log]) r<e<n, 0 @<z<e,

so that e‘g(e~) is 1—¢ for 0 <t < 1 and 0 for ¢ > 1. This g is con-
tinuous, so that, by Theorem 111,

1/y 1y 1
y f at) dt = j (L—yt) da(t) ~ L -),

(7.11.12) j o) dt ~ xL(z).

0
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It follows from (7.11.12) that
-+ 8z
f ft) dt ~ (x+82) L(z+8z) ~ (x+52)L(z),
x4-8x ’ x4 8z
f o(t) dt ~ Sz L(x), f oft) dt = SxL(x)+o{z L(z)}

x x

if 8 > 0. Since «(t) increases with ¢
Sza(x) < 8w L(x)+ofxL(x)},

= a(x)
(7.11.13) Imps <1
x40z
Similarly f oft) dt ~ Sz L(z—+8x)
Sxa(x+-0x) > 8x L(x+8x)+ofwL(x+8x)},
. afx+0x)
(7.11.14) y_gm) > 1.

Finally, (7.11.13) and (7.11.14) show that a(z) ~ L(z).

7.12. The method of Hardy and Littlewood. We insert here a
short sketch of the method by which Hardy and Littlewood first proved
Theorem 96. The method is less simple than Karamata’s, which we
followed in §7.6, but depends on ideas which are interesting in them-
selves. We begin by proving ‘

THEOREM 112. If g(x) is differentiable for 0 < x < 1, g(x) ~ C(1—x)-¢,
where C > 0, « > 0, when z — 1, and g'(x) increases with x, then

g' (@) ~ Co(l —z)-2-1,
If x = 1—y, g(x) = GQ(y), then Q(y) ~ Cy—* and —Q'(y) increases
as y decreases. We choose a positive § such that
(1—e)da << 1—(14-8)~> << (14¢) da.
Then Gly)—Gly+8y) ~ C{1—(1-+8)~y~,
and therefore
G(y)—G(y+8y) > C(1—e){1—(1+8)~ Yy~ > C(1—e)2ady—2
for sufficiently small y. But —@&'(y) increases as y decreases, and

therefore
v+oy

—3y@'@y) > [ {—GO)}dt = Aly)—Gy+3y).

v
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Hence —8y@'(y) > O(1—e)%dy—>
for sufficiently small-y, and

lim{—y*1@(y)} > Co(l—e).

Similarly the upper limit does not exceed Cu(l-}-¢)2, and the theorem
follows.

A simple corollary is

THEOREM 113. Ifc, > 0 and

9(@) =Y cpa® ~ O(1—z)= (C >0, a>0),
then go(x) ~ Ca(a+1)...(a+p—1)(1—2z)~*>,
for every positive integral p.

Plainly ¢’(x) increases with x, so that ¢'(x) ~ Ca(l—z)~*-1; and the
argument may be repeated.

From this point on we do no more than indicate the main lines of
the proof. One preliminary remark will help to make it more readily
intelligible. It follows from (7.5.1), by the simple argument used at
the beginning of § 7.8(ii), that s, = O(n); but the argument fails us as
soon as we try to obtain a more precise result. The reason is, at bottom,
that there is no such ‘peak’ in the sequence (z*) or (e-*¥) as would
enable us to infer that the series is dominated by terms near a maximum
term. We can, however, create such a peak artificially by p differentia-
tions with respect to y. This replaces e-"¥ (apart from sign) by nPe—m,
which has & maximum where n is about N = p/y. The maximum is
about (p/ey)?, which increases rapidly with p, so that the peak is
pronounced when p is large. Thus the fundamental idea of our proof

will be that of differentiating a large number of times.
Coming more to detail, we take C' = 1, so that

1 1 1
Sane W =T 6" = 1 D Gt~ (7~

and, after Theorem 113, we may differentiate this relation any number
of times with respect to y. We thus obtain

(7.12.1) S nPs, e ~ (p4-1)1 y-P-2
for every p. Now
(7.12.2) > nPe~™ ~ ply—?-L,

The terms of this series have a peak about where n = N, and decrease
fairly rapidly on either side of it. It is therefore natural to suppose
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(and is easily verified) that we can choose first a large p, and then an
M depending on both p and y, so that M = o(N) and

(7.12.3) nPe~™ < eply-P-1

(n<N—M n>N+M)
for small y. Also s, = O(n), so that s, cannot behave violently, and
it is therefore natural to suppose also that we can make a similar
reduction of the series (7.12.1).

It will follow that we can choose, first p = p(e) and then

Yo =Yo (D> €) = Yole),
so that

N+M N+M
(1—e) 3 nPs,e=™ < (p41)ly»=2 < (I4¢) > nPs, e
NTm NTM
for y < yole). A fortiore, since s, increases with n, we shall have
N+M N+M
(1—€)sy_pr > nPe~™ < (p+1)1y P2 < (14-€)syyp D nPe ™.
NTm NTM

It will then follow from (7.12.2) and (7.12.3) that
(1—2¢)sy_pr < (p+1)y~ < (1+2€)sy.p
for large enough p and small enough y. Finally, since
N+M ~ N~ py™,
it will follow that sy ~ N.

‘There is a good deal of detail to be added, but it is mostly a matter
of routine; and the proof, though admittedly less simple than Kara-
mata’s, should not be found difficult when once the ideas underlying
it have been understood.

7.13. The ‘high indices’ theorem. If A, /A, —> 1 or, what is the
same thing, if

A,—A,_
(7.13.2) a, = O(i,),

and S(y) = Y a,e™?>s, then > a, = s. This is a special case of
Theorem 103, and we stated in Theorem 104 that the result is true

without the restriction (7.13.1).
A particularly interesting case is that in which A, increases sufficiently

rapidly and regularly to make
(7.13.3) Apsr > €Ay,

where ¢ > 1 (as, for example, when A, = 27). Then u, lies between
(c—1)/c and 1, so that (7.13.2) reduces to a,, = O(1). Thus in this case
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the theorem asserts that the series is convergent whenever its terms
are bounded. This assertion, however, does not contain the full truth,
which is that, when A, satisfies (7.13.3), then %o restriction on a,, is
necessary.

THEOREM 114. If A, satisfies (7.13.3), and S(y) — s, then > a,, con-
verges to s.

We may suppose Ay, > 0. The kernel of the proof lies in that of the
lemma which follows.

THEOREM 115. If A, satisfies (7.13.3), A, > O,

N
J&) = f3@) = 3 ane
and |f(y)| < H for y > 0, then "
la,| < CH, -
where C = C(c) depends only on c.

R
Suppose that P(y) = p,e,
=0
where v, is positive and increases with . Then

N N R R
F(y) = z anP(Any) = z an z pre"':)n” = z prf(vry)’
n=0 n=0 r=0 r=0
and therefore
(7.13.4) [Fy)| < H 2 |2y |-
We take, in particular,

P(y) = {p(@)}* = {42v—2-2)}%.
Then p(y) is 0 for y = 0, increases to a maximum 1 at y = 1, and then
decreases to 0. It is O(y) for small, and O(y-!) for large y, so that the

series o ©
§=3p) 8=3F pl)
are convergent. Also

(7.13.5) 3 Ip] = (4018 = 87

Suppose now that a,, is the a, (or one of the a,) whose modulus is
largest. Then
a P( )
n—‘O

a0 [r()=[3,
> a2

n=0

-t 3 2

n¥m

> lanl(1— 3 (e~ 3 (p(e}®),
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since A, /A, = ¢ and p(y) decreases as we move away from 1 in either
direction. Also

2ol NE < {p(ePES, 2 {p(e)E < {p(e)}*1S,

each of which decreases as R increases and tends to 0 when R — co.
We can therefore choose an R = R(c) for which Y {p(c~*)}F <},

2 {p(e))E <4,

(7.13.7) IF(QAR)| 2 lag[(1—1—1) = }an,].
Tt now follows from (7.13.4), (7.13.5), and (7.13.7) that
la,| < 2.8%H.

This proves Theorem 115, but we need its extension to infinite series.

THEOREM 116. The result of Theorem 115 is true for an infinite series
fy) = 3 a, e~V convergent for all positive y.

We choose a particular n, say, » = m, and a positive e. Then the
series for f(y-+e¢) converges uniformly for y > 0, and we can choose
N = N(m,¢) > m so that

l S apemeent| < [fly+e)l+e < Hte
n=1

for y > 0. Hence |a, e €| < C(H+e¢), and the result follows when
€e—>0.

It is now easy to prove Theorem 114. Since S(y) > s when y - 0,
there is a 8 = 8(¢) such that | S(y)—S(y’)| < € when y and y’ both lie
in (0, 28). Since S(y) is continuous for y > 8, and S(y) - 0 when y — o0,
there is an 7 = 7(e, 8) = 7(e) such that 0 < 5 < & and

(7.13.8) [8(y)—8y+n)l <e

for y > §; and this is true also for 0 <y < 3, since then y and y-+1
both lie in (0, 28). Hence (7.13.8) is true for y > 0. Since ’

Sy)—Sy+n) = X a,(1—e1)e-y,
it follows from Theorem 116 that
la,|(1—e1) < Ce

for all n, and so that |a,| << 2Ce for large n. Hence a, = o(1). But
then a, = o(y,), because of (7.13.3), and the conclusion follows from
Theorem 89.
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NOTES ON CHAPTER VII

§ 7.1. A great deal has been written about Tauberian theorems during the last
thirty years, and the literature is rather confusing, since almost every theorem
carries & number of variants, analogues, and generalizations, and it is often
difficult to trace a proof, or even an explicit statement, of the precise theorem
which one may need. We confine ourselves here to theorems of ‘power series
type’, i.e. theorems associated with the exponential kernel ¢V, and to the
simplest and most striking among them.

Our treatment of the subject in this chapter is based mainly on the work of
Hardy and Littlewood and of Karamata. We return to it in Ch, XII, where we
adopt the more general point of view of Wiener. There is & clear account of the
fundamental theorems in Widder’s ch. 5. The following list of papers may be
useful :— ,

Ananda Rau [1], JLMS, 3 (1928), 200-5; [2], PLMS (2), 30 (1930), 367-72;

[3], RP, 54 (1929), 455-61;

Bosanquet [4], JLMS, 19 (1944), 161-8;

Doetsch [5], M A4, 82 (1921), 68-82;

Hardy and Littlewood [6], PLM.S (2), 11 (1912), 411-178; [7], ibid. 13 (1913),
174-91; [8], ibid. 25 (1926), 219-36; [9], ibid. 30 (1930), 23-37; [10], MM, 43
(1914), 134-47;

Ingham [11], 0QJ, 8 (1937), 1-7;

Karamata [12], M Z, 32 (1930), 319-20; [13], ibid. 33 (1931), 294-300; [14], J M,
164 (1931), 27-40;

Landau [15], Monatshefte fiir Math. 18 (1907), 8-28; [16), RP, 35 (1913), 265-76;

Littlewood [17], PLMS (2), 9 (1910), 434-48;

Rajagopal [18], Math. Gazette, 30 (1946), 272-6;

R. Schmidt [19], M Z, 22 (1925), 89-152;

Szész [20], Miinchener Sitzungsberichte (1929), 325-40; [21], TAMS, 39 (1936),
117-30;

Tauber [22], Monatshefte fiir Math. 8 (1897), 273-7;

Titchmarsh [23], PLMSS (2), 26 (1927), 185-200;

Vijayaraghavan [24], JLMS, 1 (1926), 113-20; [25], ibid. 2 (1927), 215-22.

The list is not complete, and does not include papers based on Wiener’s ideas.

§7.2. Tauber [22]. The integral analogue, for the more general integral
{ d(yt)a(t) d¢, where ¢'(t) is bounded, $(0) = 1, and | [¢(¢)| d¢ convergent, was
proved by Hardy, T'CPS, 21 (1910), 427-51 (432).

§ 7.3. Tauber [22]. The form of Theorem 88, with Stieltjes integrals, is that
in which it is proved by Widder, 187, Theorem 3 b.

§ 7.4. Theorem 89 was proved by Landau [15].

§ 7.5. Theorem 90 was proved, and Theorem 92 stated, by Littlewood [17].
The remaining theorems are due to Hardy and Littlewood [7]: all of them are
proved in more general forms. There are generalizations for Dirichlet’s series
> a, et in [10].

§7.6. Theorem 98 was proved by Szész [20]: it is the case y = 1 of Widder’s
Theorem 4.3 (192). The proof here, based on Theorems 99 and 100, is sub-
stantially that of Karamata [14]. Theorem 96 a was first proved explicitly (with -
a change of variable) by Doetsch [5]: see also Hardy and Littlewood [9] and
Titchmarsh [23]. Doetsch also proves theorems equivalent to 91 a and 94 a.
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§ 7.7. The first explicit proof of Theorem 101, in the form given here, seems
to be that of Landau, Ergebnisse, 58. The theorem is stated and used by Hardy
and Littlewood, [7] and [10]. The less general form in which f“(y) = O(y™?) is
included in Theorem 2 of [6] (420).

Theorem 102 is a slight generalization of Widder’s Theorem 4.5 (195): he has
B(t) = t.

Theorem 103 is proved by Hardy and Littlewood [10]. The example showing
the necessity of the condition (7.7.12) is due to Ananda Rau [2].

When ), satisfies (7.7.12), Theorem 104 becomes the main theorem of Little-
wood [17]. Littlewood says there that it is true without the restriction (7.7.12),
but the first published proof of this is that of Ananda Rau [1]. We may complete
the proof as follows. .

We suppose @ = 0. Then, first, if

(1) ap = O{Qn—An1)As}s
we have ;
@) 3 dnan = 0 3 —dun} = 0.

Secondly, by Theorem 88 [0], (2), together with S(y) — s, implies
A(x) = 3 a, = 0(1).
Ays e

Next Sy) = Sagetay = [eWdA@) = y [ A di,

since 4(0) = 0, and so [ {A(t)+H)e v dy ~ '513'15

for any H. Choosing H so that A(t)+H > 0, and applying Theorem 964, we find
that

t t
[ t4(w)+H} du ~ (s+H), [ A(u) du ~ st.
1] 0

Finally, the conclusion follows from Theorem 67. This form of the proof is due
to Bosanquet.

Szész [20, 211 proved that 3 a,, converges to s if S(y) — s and a,, satisfies both
(7.7.13) and (a)lima, > 0. This theorem includes Theorem 103, since (7.7.13)
implies (a) when A, satisfies (7.7.12), and also the theorem referred to in the
note on § 6.1.

Dr. Bosanquet has pointed out to me that (as was suggested to him by Mr.
Ingham) (7.7.13) and S(y) — s imply

Sa, =3 (R,Ak)
for every positive x; and Rajagopal [18] has proved this explicitly for « = 1.
Both Bosanquet and Rajagopal use a result of Szész [20], and Bosanquet also
uses the theorem of Riesz for (R,) k) summability which corresponds to
Theorem 70.

Szész [20] and Ananda Rau [3] have proved that if 3 aze ¥ ~y~2, where
« > 0and a, > 0, then A, necessarily satisfies (7.7.12).

§7.10. Theorem 105 was proved by Szész [21]: it includes his theorem referred
to under §7.7. The method used in this section is that referred to at the end of
-Hardy and Littlewood [9].

§7.11. The proof is substantially that of Karamata [14].
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§ 7.12. The technique of repeated differentiation was used first by Littlewood
in [17].

§ 7.13. Theorem 114 was conjectured by Littlewood in [17], and proved by
Hardy and Littlewood in [8]. The proof given here, which is much shorter, is
due to Ingham [11]. Ingham proves a good deal more, in particular that, when

Ans1/An — 00, the limits of indetermination of s,, when n— o, are the same as
those of S(y) when y— 0.

Bosanquet [4] has proved a theorem which includes both of Theorems 104

and 114, viz. that S(y) — s and

lim fim Max |@gy+..tan| =0

80 100 A2 <(1+8)Ay
imply ¥ @, = s. Szész [21] had proved the corresponding theorem for R,A1)
summability.

4780 N



VIII
THE METHODS OF EULER AND BOREL (1)

8.1. Introduction. In this and the next chapter we study more
systematically a group of methods of which the most important are
the E and B methods defined in §§ 1.3, 4.6, and 4.12-13. The definitions
which we consider differ widely in form, and might seem at first sight
unlikely to have much in common; but the relations between them turn
out to be much closer than might have been expected. In particular
the Tauberian theorems associated with them are essentially the same.

8.2. The (E,q) method. We begin with a generalization of the
definition of §§1.3 and 4.6. Suppose that the series Y a, 2"+ converges
to f(x) for small z, that ¢ > 0, and that

8.2.1 w:i = z B
@21 —w YT it

80 that y = (14-¢)~* when z = 1. Then, for small z and y,

(8.2.2) fz) — i (1~ y) i“n i (’:)qm-nymﬂ
0 ==

n=0 m=n

2 g(’:)q’"‘”an = 2«15%’{(% Dyjm,

where
1 < (m
Q) — = m-m,
(8.2.3) a4 (q+1)m+1n§=;(n)q a,.
If
(8.2.4) Sa@ =4

then we say that Y a, is summable (E,q) to sum 4. For ¢ = 1 the
definition reduces to Euler’s definition of §§1.3 and 4.6, and for ¢ = 0
to that of ordinary convergence.

If a, = 27, then

@ — (q+2)" @ 1 [j_gta\7t_ 1
W=y 2% =gl ) T

if and only if [g+2| << ¢g+1. Thus > 2" is summable (E, g) in the circle

whose centre is —¢q and whose radius is ¢+ 1. The circle increases with

¢, and tends to the half-plane Rz << 1 when ¢ —»> 0. We sawin §§4.12-13

that this is the region of B, or B’, summability of the series.
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We may write (8.2.3) as

(8.2.5) (g+1)"*+1a@ = (g+ E)"a,,
where E is defined as in §4.6. Also
L T i I (g+1)m™—(gta)m+
q+1 " (g+1) (@+1)mt (g+1)mH 1—z
1 £ m+l m+l-n 2 n—1
=Wn=l( " )q (14424, 2 1),

Hence, writing E for z, and observing that

A+ E+...4+ B Vay = agta,+...+0,y = Ay,

we obtain

(8.2.6) A;g)—nzoa(q)_{_ L atE _I_(q+E)m}a

q-+1 " (g+1)* (g+1)m+!
1 m-+1\ m+1\ .
= gl o (75 et A

There is a slight lack of symmetry in this formula which is incon-
venient and will lead us to modify it in § 8.3.

We call A@ = Y a@ the g-th Euler transform of A =3 a,. The
formal relation between the two series is defined by

S a,2m = 3 a@{(g+ )y} = S a@e, o=

1+g—¢2’
8.3. Simple properties of the (E,q) method. We must first prove
TaroreEM 117. The (E, q) method is reqular.
For, in the notation of § 3.2,
o  — 1 ('m—}— 1
(g1 \n+1
Cym > 0, and 3 ¢, = 1—(g+1)"™"1¢g™+1 > 1 when m — co.

Theorem 117 is the particular case ¢’ = 0 of

)q’"“" >0 (n<<m), Con = 0 (0 >m),

TaEOREM 118. If a series is summable (E,q'), and q¢ > ¢, then it is
summable (E,q) to the same sum.

This plainly follows from Theorem 117 and

THEOREM 119. The r-th Euler transform of the q-th Euler transform of
a series is the (q+r-qr)-th Euler transform of the series.
For xz = z/(149—qz) and 2z = w/(14r—rw) imply
w

== "1'+“ 8—3w’ § = Q+7+q7'-
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It follows from Theorem 118 that, as ¢ increases, the (E, ¢) methods form
a scale of increasing strength.}

THEOREM 120. The (E, q) method has the properties («)—(8) of Theorem
40,

We need only consider (y) and (8). We have to show the equivalence
of the two assertions
(8.3.1) Sa® =4, (8.3.2) 3@ = A—a,,
where b, = a,,,. We may suppose @, = 0, so that B, = 4,,,. Then,
after (8.2.6),

B = <q+i>m?1{(m_f1) mA”L(mH) Pttt Ay,
and so
(8.3.3)
1

B%>—A%>=W{(’"+l)qmal+ ) = @+ 1)ai

(i) If (8.3.1) is true, then a{2,, — 0, and (8.3.2) follows from (8.3.3).
(ii) We may write (8.3.3) as
BY = (q+ 1A, —g4 ),
and it follows, since A@ = 0, that

@ _— go, 9 pa (a)
(+ 1A%, = BP + —|—1B ~1 - +( +l) By
This is a transformation
A%)-l—l = 2 Cmn Bﬁi’)
with Co = @™ "(g+ 1)1 (n < m), 0(n > m),
and we can verify at once that the conditions of Theorem 2 are satisfied.
Hence (8.3.2) and (8.3.3) imply 4@, , - A4, which is (8.3.1).
It follows from Theorem 120 that 4, > A (E,q) is equivalent to
A, ,—~> A (E,q), and so to
1 m+ 7"
Hence, changing m+-1 into m, we may replace A? — A4 by
1 m
(@) m m—1 .
A — (q—l—l)m{q A0+(l)q A1+...+Am} > 4;
and it is usually most convenient to define the ‘Euler mean’ of 4, in
this way. We may say that 4, > A (E,gq) if

S (™) gn-na =(qiﬁf)mA A.
(q+1)"‘n=0(n)gm " \gr) T

T The example of the series T z" shows that no two (E, ¢) methods are equivalent.

(8.3.4) AQ®—
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If then we write s, and ¢, for 4, and A@, we have

029 1= S (i) S
n=0 n=0

_ g+ E\™ . 1—E\m . 1 m
= (t=55) o= (751) o = g

an equation whose full significance will appear in Ch. XI.

TueoreM 121. If 3 a, is summable (E,q), then a, = o{(2¢+1)"}.

It follows from (8.2.4) that (¢+1)a® = o(1), and so, from (8.2.5),
that

* (q+E)maq = of(g-+1)"}.
Also a,, = E"ay = (E+q—q)"a,, and therefore

= of @+ (JJala+ V-t r) = of(ag1y

The example of the series 3 2”, which is summable (E, g) for
—29—1 <z <1,

shows that we cannot replace 2g+1 by any smaller number.

8.4. The formal relations between Euler’s and Borel’s
methods. We saw in § 8.2 that the region of (E,q) summability of
> z" tends to its region of Borel summability when ¢ - o0; and this
suggests that Borel’s method may be regarded as in some sense a
limiting case of Euler’s. We shall make this connexion more precise
later (Theorem 128); but it may be worth while to show here how it
harmonizes with the formal ideas of §§4.18 and 8.3.

If we write m/x for q in (8.3.4), we obtain

s (2 G
O T e

+(l_%)<l‘%) (‘—mTl),,—, } $(m, 2),

say. Then lim lim ¢(m,z) = hm 4,,

m—»c0 F—»0

- x~7-l,
il—g lim ¢(m,z) = hm e zn!A"'
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The first way of proceeding to the limit leads to ordinary convergence,
the second to Borel’s exponential method of summation (§4.12). The
various Euler methods correspond to the limit process m = gx — 0.

8.5. Borel’'s methods. Borel’s exponential and integral methods
were defined in §§ 4.12-13. If

"
e z A, — —
n!

we say that 4, > 4 (B), and if

fe-mian— dx—llm Je*"Za ——dx =

we say that 4, — A (B’). The methods are of quite different types, the
first being an ‘integral function’ definition in the sense of §4.12, with
J(x) = ¢*, and the second a ‘moment method’ in the sense of §4.13,
with p, = n!, x(z) = 1—e=%; but the special properties of the ex-
ponential function make them all but equivalent. First, however, we
observe

TueOREM 122. The B and B’ methods are regular.

This is a corollary of Theorem 33 (for B) and of Theorem 34 (for B').
We now consider the relations between the two methods: we shall
find that they are nearly, but not quite, equivalent. We write

(8.5.1) aw = S a,  A@ =D 45

If one series is convergent for all z, then so is the other. Also
, z" ' xn
(8.5.2) V@)= Gy A =D Aniay

(8.5.3) f e~ta/(t) dt = e~a(x)—ay,+ fe—ta(t) dt,
[}

]

(8.5.4) A (x)—ay = f g—t{e—’A(t)} dt — f (A’ (1) — A(t)} di
0 0

z o z © -4
" rn
S 2 (A —Ay)— dt = f et >ty —dt = f ea’(t) dt;
J 1] " n' 0 Z n' 0

and hence, comparing (8.5.3) and (8.5.4),

(8.5.5) e*A(x) = e~"a(x)-+ f e~ta(t) dt.
o
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The last equation gives

TaEOREM 123. The B and B’ methods are equwalent if and only if
eZa(z) - 0.
We can, however, go farther. It follows from (8.5.5) that, if

T

[ ea) &t = $(a),

]
then e—*A(x) = ¢(x)+¢'(z). If $+¢' - A then, by Theorem 53, ¢’ - 0
and ¢ > 4. Hence we deduce
THEOREM 124. A series summable (B) 1s summable (B’) to the same sum.
The converse is false. If
Y e Vit
" @2p+1)!
then

a(r) = (=1p €242 — ¢Tgin €2,

(2p+1)!

0 @

je"”a(z)dx = fsinez dx = fi%%du
] 0 1

but e~%a(x) does not tend to 0, so that the series 3 a@,, is not summable
(B). Thus we have

THEOREM 125. There are series summable (B') but not summable (B).

Next, we observe
THEOREM 126. The assertions
G +a,+a;+... =4 (B), ayta,+agt... = Ad—ay (B)

are equivalent.

THEOREM 127. The B and B’ methods possess the properties (), (B),
and (y) of Theorem 40, but not the property (3).

Theorem 126 follows from (8.5.4), and Theorem 127 from Theorems
124, 125, and 126.

We conclude this section with the theorem to which we referred in

8.4,

§ THEOREM 128. If Y a, is summable (E,q), then it is summable (B) or
(B’) to the same sum.

" (gx)™ v x®
o w3 AG-SEFEAG- DA
7?4, » "4,
(n——2)!2!+"'+ n! ’

c_ — __ qAn—l
where n! (n—1)! 1!+
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so that ¢, = (¢+1)"A@, in the notation of (8.3.4). Hence
eZA(x) =e® z A T — e—{g+he Z AT )T {q+ l)x}

If 3 a, is summable (E,q) to A, then A — A4, and so e~24(z) - 4,

by Theorem 122. Thus the series is summable (B), and a fortiors
summable (B’).

8.6. Normal, absolute, and regular summability. If
Oty +0p 0+

is summable (B) for every p, in which case, after Theorem 124, it is
also summable (B’) for every p, and conversely, by Theorem 126, then
we shall say that 3 a, is normally summable. For this, it is necessary
and sufficient that > a, should be summable and that

e~TgPN(x) = e* z anw:—T: - 0.

If Borel’s integral is absolutely convergent, we shall say that > a,
is absolutely summable. If the series a,-a,.,+... is absolutely sum-
mable for every p, i.e. if J’ e~*|a®(x)| dz < oo for every p, then we shall
say that D a, is regularly summable. Our language here differs from
that of Borel, who defines absolute summability as we have defined
regular summability. In any case the definitions will not be very
important here.

(14g)r+
n+1

is normally but not absolutely summable. Its sum is

The series

o«

fe“a(t) dt = fCOSt ¢ dt+ fs—m—tdt = {mi.
0 0

8.7. Abelian theorems for Borel summability. Our next theo-
rems are ‘ Abelian’: they belong to the class typified by Abel’s theorem
on the continuity of power series. Here, and throughout the rest of the
chapter, we work primarily in terms of summability (B’): the transition

to summability (B), when desirable, is easily effected by means of
Theorem 126.

THEOREM 129. If a power series > a,, z" is summable (B') at a point P,
then it is summable at every point of the stretch OP from the origin to P.
If Q is a point on OP between O and P, then the series is uniformly
summable on QP.
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It is not assumed that the series has a circle of convergence. We
may suppose (making a trivial transformation) that P is the point
z = 1. Then the integral
(8.7.1) J(z) = f e~a(zt) di

is convergent for z =1, and we have to prove it convergent for
0 < z < 1 and uniformly convergent for 0 < 8§ <{ 2z < 1. Now

(8.7.2) J(z) = % f e~ea(t) dt = I_{ii)’
say, when 0 <<z < 1; and
(8.7.3) K@) = [eveta(t)dt = k(s), 5= %_1_

This integral is uniformly convergent for s >> 0, i.e. for 0 <z < 1, and
therefore J(z) converges as stated in the theorem.

Theorem 129 does not state the full truth; actually, J(z) converges
uniformly for 0 <<z < 1. The argument above fails to prove this
because of the factor z-1 in (8.7.2).

TaEOREM 130. If Y a, 2" is summable (B’) at P, then it is uniformly
summable on OP.

We may again suppose that P is z = 1; and it is also convenient to
suppose, as plainly we may, that ¢, is real. We have to prove that
H'

f e~ta(zt) dt
b4
for H' > H > Hy(e) and 0 < z < 1. Since Theorem 129 proves uniform
convergence over (},1), we may suppose 0 << z < 4. There are three
cases to consider, according as (a) H'z <1, (b)) Hz <1 < H'z, or
(c) Hz > 1. We state the argument for case (b), the arguments in the
other cases being simpler variants. We may suppose H > 2.
We write

(8.7.4) \I| = |I(z, H,H')| = <e

T
M = Max|a(t)], N = Max fe-‘a(t) dtl.
0<i<1 T>1 i
Then
1/z H’
(8.7.5) I= f e~a(zt) dt + f e~ta(zt) dt = I,+-1,,
H 1/z
(8.7.6) \LI<M f etdt = MeH,
H

H'z H'z

T
L= % f e"/’a(t) dt = % f e-"e-‘a(t) dt = e_; J e~ta(t) dt,
1 1 1
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where s =2-1—1and 1 < T < H'2. Hence

(8.7.7) L] < I-Yexp(l —2) < ge-mz < NHe H,
since 0 <z < 4, 2 < H < 1/?, and ue#* decreases for » > 2. From
(8.7.5)—(8.7.7) it follows that
[I| < MeB4{NHe 8 < ¢
for H = Hye).
As an application of Theorem 130 we prove
TraeoreM 131. If 3 a, is summable (B’), and

1
(8.7.8) Cp = J’ x" dy(=),
0

where y(x) is bounded and increases with x, then Y c,a,, is summable (B’).
For, if b,, = c,a,, then

b(t)—zb,, : Z tnfxndx_fa(tx)dx,

e~tb(t)d d et di
J (t)dt = fxf a(tz) dt,

because the inner integral on the right is uniformly convergent for 0 < = < 1.

TaEOREM 132. If 3 a,2z" is summable (B') at P, then its sum on OP
18 an analytic function of z regular inside the circle C described on OP as
diameter.

We may again suppose that P is 2 = 1. The series is summable on
OP, and its sum is given, for 0 <<z << 1, by (8.7.2). It is sufficient to
prove that K(z) converges uniformly in the region D bounded by any
two circular arcs from O to P making acute angles » with OP. We write

: z=ref, §=21_1=pe
and use the formula (8.7.3). Since k(s) is convergent for s = 0, it is
uniformly convergent in the angle |¢| <X 9. The arms of this angle
correspond to the circular arcs which bound D, and its interior to the
interior of D. Hence K(z) is uniformly convergent in D.

It will be observed that the transformation from (8.7.1) to (8.7.2) presupposes
the reality of z. Thus, although we have proved that J(z) is regular inside C,

we have not proved the series summable except on OP; and we shall see later
(§ 8.9) that it is not necessarily summable at any other point of C.

8.8. Analytic continuation of a function regular at the origin:
the polygon of summability. If the series > a,2" hasa circle of con-
vergence, it defines a function regular at the origin, and the integrals
J(z) and K(z) of §8.7 may be used to find representations of this
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function valid outside the circle. We can define the region of con-
vergence of J(z) in terms of the singularities of the function.

The function f(2) = (c—2)t = 3 ¢ 1z

is regular except at z = ¢, or P, and its circle of convergence is |z| = |c].
In this case
J(z) = ¢ f e~¥1-l) gt

is convergent if and only if R(z/c) < 1, i.e. if z and the origin lie on
the same side of the line Lp through P perpendicular to OP. If

(8.8.1) @)= I,
m=1 ™

and z = ¢, is P, then z must lie on the same side as the origin of all
the lines Lp_. The region thus defined is the inside of a convex polygon,
which may be closed or open and may reduce to an angle, strip, or
half-plane. The series is summable ‘inside’ this polygon. Cauchy’s
integral formula, which is a generalization of (8.8.1), suggests that there
may be a corresponding result for an arbitrary analytic function regular
at the origin. ’

We suppose then that f(z) = 3 a,2z" is regular at O, that P is a
singular point of f(z), and S the set of all points P. We define IT or II(f)
as the set of all points Q such that @ and O lie on the same side of
every Lp, I' as the set of frontier points of II, and II* as the part of
the plane complementary to II4+TI. We call I the Borel polygon of f,
II its interior, and II* its exterior; and we shall prove that II is the
region of summability of ¥ a, 2" in the sense that the series is summable
at all points of IT and is not summable at any point of IT*.

If f(z) = (1—22)%, then T is formed by the two lines z = +1 and II is the
strip between them. If the circle of convergence is a barrier of singularities,
T coincides with it. If x = d > 0 is a barrier of singularities, and f(z) is regular
to the left of this line, then I' is the parabola which touches the line at d and
has O as focus.

It follows at once from Theorem 132 that the series is not summable
at any point @ of IT*. For, if @ belongs to IT*, there is a line Ly, passing
between O and Q, and the corresponding P lies inside the circle C.
It remains to prove that the series is summable at points of II.

Suppose that f(u) is regular in and on a closed curve K surrounding
the origin in the u-plane, and that

(8.8.2) Rizfu) < 1-8 <1
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for all points  on K (in which case z necessarily lies inside K). Then

(8.83)  fl2) = S g J' [ f o-b+telu gy

U— z

The repeated integral is majorized by
f e [ ag,

We may therefore invert the integrations; and we obtain
(8.8.4)  f(z) = f etdr L f S gt gy, — f eI, 2) dt,
2mt U
K

say. Since f(u) is regular inside K, and e#/* regular except at the origin,
we can calculate I(¢, z) by contracting K into a curve K’ inside the circle
of convergence of f(u). The power series for f(u) and e/ are uniformly
convergent on K’, and so

=g [ S e 3 AE = 50, ot

Hence f@z) = f e~a(tz) dt,

i.e. Y a,2" is summable to f(z).

It remains to show that, 'if z is in II, we can draw K so as to
satisfy our conditions. If @ is a point of II, then f(z) is regular inside
the circle C described on OQ as diameter; for, if there were a singular
point P inside C, the corresponding Lp would pass between O and Q.
Further, since there are points @' of IT on 0Q beyond @, and f(2) is
regular at O, it is regular on a slightly larger concentric circle ¢’ inter-
secting OQ in O’ and Q. If z is at @ and w at a point 4 of ¢, then
R(z/u) < 1if @ and O lie on the same side of the line through 4 per-
pendicular to OA. The envelope of these lines, when A runs round ",
is an ellipse whose foci are O and ¢ and whose major axis is 0'Q’: ¢’ is
the ‘auxiliary circle’ of the ellipse, which is flat when O’ is near to O,
but always includes O in its interior. Also R(z/u) < 1 for all % on C’,
and therefore, since R(z/u) is continuous, (8.8.2) is satisfied, with an
appropriate 3, for all  on C’. It follows that, when z is at @, we can
take O’ as the curve K of our argument, and therefore that the series
is summable at @. Thus it is summable at any point of II.

Our argument actually proves rather more. The repeated integral
(8.8.3) is absolutely convergent; and therefore (8.8.4) is absolutely con-
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vergent, so that the series is absolutely summable at Q. Also the
function fy(z) = a,2P+a,, 2P+ 4 ... satisfies the same conditions of
regularity as f(z), so that all the series a, 27 - ... are absolutely summable.
Hence ) a, 2" is regularly summable at Q.

It is also plain that the whole argument works uniformly for all z in
any closed region interior to II, so that the series is uniformly summable
in any such region.

Summing up, we have proved

THEOREM 133. The power series representing a function regular at the
origin is summable (B’) inside the Borel polygon of the function, reqularly,
and uniformly throughout any closed region interior to the polygon; and
18 not summable at any point outside the polygon.

In particular we have

THEOREM 134. A power series is summable (B') at any reqular point
on its circle of convergence, and uniformly summable in some neighbour-
hood of any such point.

We may plainly substitute B for B’ in these theorems.

8.9. Series representing functions with a singular point at the origin.
The analysis of § 8.8 rests throughout on the assumption that the series X a,2z"
converges for small z. When this is not true, the series may still be summable
for certain z, and give a complete or partial representation of an analytic function;
but the region or regions of summability may have very diverse characters, and
the sums in different regions may represent different functions. In all cases,
however, after Theorem 130, a region of summability which includes a point P
must include all of the line OP.

The two examples which follow are interesting.

(1) If the series is

21 4!
1H0—T;28 4045 24 4+0—..,
then a(zt) = ¢~*'**, and the sum is
(8.9.1) J(z) = [ et a,

If z = re¥, then the integral converges in the quadrant —}r < 6 < }m and its
image with respect to the origin. If z = # = 1/¢ > 0, then

© © ¥
J(e) = ¢ [ et du — gete* [ v dp — gew(%«/ﬂ— [ e dv) — (),
0 3¢ 0
say, an integral function of £. Thus J(z) = F(1/z) for |argz] < }w. Also J(z) is
even, so that J(z) = F(—1/z) in the opposite quadrant; and these two functions
differ by #tz~16!/4#". Thus the series represents different analytic functions in
its two regions of summability.
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| (=1p
(2) Suppose that ay, = Z ——phc?,

where ¢ > 0. Then

a(zt) = (o Z (_1) —pnc?

n!

_ Z (-1)%1’ (pzt)” _ z (=172 pat _ gmeet,
n! !

and J(z) = J e—t—ce® gy — J‘ o—t—ceM(cosyi+isinyt) g,

If z < 0 then J(z) converges for all ¥, but if > 0 it converges for y = 0 only.
Thus the series is summable (1) in the half-plane z < 0, and (2) on the positive
real axis.

Let us first suppose z real. Then

-] 0 d
Ldu
J(z) = fe“"““ dt = J.e—“‘ P
0 1
Putting u* = v and Z = —1/z, we find that J(z) is P(Z) or @(2), where

@ 1
P(Z)= —Z j ewI-ldy, Q(Z)=12 j e—cvpZ-1 g,
1 0

according as z > 0 or z < 0. Here P(Z) is an integral function of Z; and
Q(Z) = T(Z+1)c~%+P(Z)

if RZ > 0, so that Q(Z) defines a function analytic and meromorphic all over
the plane. The two functions represented by the series differ by I'(Z+ 1)cZ.

This example is particularly interesting as an illustration of Theorems 130 and
132. If P is a point on the positive real axis, then the series is uniformly sum-
mable on OP, and is regular inside the circle C of Theorem 132, but it is not
summable at any point in C except points on the axis. In this sense Theorem 130
states the most that is true.

8.10. Analytic continuation by other methods. The principles
used in § 8.8 may be applied to other methods of summation. The most
interesting for this purpose are those which, like Lindel6f’s and Mittag-
Leffler’s methods of §4.11, sum ¥ 2" in its Mittag-Leffler star. We con-
sider, generally, a method P of summation in which } a, is defined as

(8.10.1) %im > A,(8)ay,,
—-0
where A,,(8) > 1, when 8 - 0, for every n. Thus
A®) =1, A,@)=eEr (n>0),
for Lindelof’s, and 4,,(8) = {I'(1+4-8n)}~! for Mittag-Leffler’s method.
THEOREM 135. Suppose that (i) 3 A,(8)z" s an integral function of z,
for every positive 8; (ii) that
1
$s(z) = Z 4,8)z" — 1%
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when 8 - 0, uniformly in any closed and bounded region contasning no
point of the line (1,00); (iii) that f(z) is the principal branch of an analytic
Sunction regular at O and represented by Y a, z" for small z. Then

2 4,0)a, 7" > f(z)
uniformly in any closed and bounded region A interior to the Mittag- Leffler
star of f(2).

We may suppose that A is star-shaped, i.e. that if it includes P then
it includes every point of OP. We can expand A about the origin, in
a ratio p > 1, into a region A’ still lying in the star of f(z). If K is the
boundary of A’, and z is inside A, then z/u is not on (1,00) for any u

of K, and 5 (s) . é
uniformly on K. Hence
0= [ £ - 1 o

— lim f #s(2 )f( ) — Jim fz A,.(S)( ) "fy e,

Contracting K into a contour inside the circle of convergence of f(u),
as in § 8.8, substituting the power series for f(«), and integrating term

by term, we obtain
flz) = Isim > 4,0)a,2"
—0

It is plain that the argument works uniformly for z of A. Methods such
as these give better results in this problem than Borel’s, but Borel’s
method is much more manageable, owing to the simple formal properties
of the exponential function and series.

8.11. The summability of certain asymptotic series. It has been
proved by Borel and Carleman that there are analytic functions corre-
sponding to arbitrary asymptotic series (§ 2.5). More precisely, given
any sequence (a,) and any positive a, there are functions f(z) = f(re®)
such that f2) ~ agtagz- a2t ..,
when r — oo, uniformly in the angle |0] < am. If B > 0 and 2ka < 1,
then rme-B# . 0 for every m, uniformly in the angle. Thus all the
functions f(z)+4e~P# have the same asymptotic expansion in the angle.

The situation is changed if we adopt more precise hypotheses con-

cerning the error-term of the expansion. It may then be possible to
prove that there is at most one f(z) which satisfies the conditions, and
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that f(2) is in some sense, for example Borel’s, the sum of the series.
We show this by proving a theorem of Watson.
We denote the region

r>k>0, —dr—p <O < A,
where 0 < A < }m, 0 < p < im, by D(A,p, k), and its boundary by
C(A, u, k); the latter is formed by part of a circle whose centre is the
origin and parts of two radii from the origin to infinity in the negative
half-plane. Usually A and p will be equal.

THEOREM 136. Suppose that f(z) is regular in D(A, A, k), for a given A and
k, that ¢ > 0, and that

(8.11.1) f@) = ay+a,271+...+a, 2"+ RB,(2),
where

(8.11.2) a, = O(n!o"), R, = O{(n+1)t g™*lr—n-1},
uniformly for all n and for z in D(A, A, k). Then (i) the series

(8.11.3) Z ang = a(t),

where t = pet$, is convergent for p < 1/o; (ii) the function aft) is regular
in any angle |$| < 8 < A;

(iii) a(t) =%@, f f(’_t‘)‘igdu,
L

where L is a contour C(v,v,l) with 0 < v < X and 1 > k[, described from
below; and

(iv) flz) = f e-“’a(%) dw

forr >k, |8] <3.

The last clause of the theorem asserts that > a, 2" is summable, to
f(2), by an extension of Borel’s method which is often useful. If (@) the
series (8.11.3) is convergent for small #, (b) the function a(?) defined
by the series is regular on (0, ), and (c) f e~ta(t) dt = s, then we shall
say that Y a,, is summable (B¥) to s. Thus here S a,z~" is summable
(B*) to f(2).

As another example, if a, = (—1)"n!z", and z is not real and negative, then
a(t) = (1+zt)* and » .

1—11z4-2122—... = f&ztdt (B*).
This is the sum found heuristically in § 2.4.

If the inequalities (8.11.2) are true for every positive o, then a(¢) is an integral
function, and B* reduces to B’.
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Passing to the proof of Theorem 136, (i) is obvious from (8.11.2).
Next, suppose that ¢ = pei®, p < 1/o. Then, replacing f(u/f) by its
asymptotic expansion, we have formally

1 u) e '_ m 1 ev _ m
(8.11.4) 5 ff(-z)u du = z a,t 9 j um+1du = Z O
L L
and we have to justify the term-by-term integration. If » describes L
then u/t describes C(v—¢,v+¢,1/p), which lies inside D(A, A, k) if
(8.11.5) 1> kfo > kp, ] < A—v.

Then f(u/t) is bounded on L, and the integrals in (8.11.4) are convergent.
We now write the integral (8.11.4) in the form

(8.11.6) Zatm2m,fu'"+1 ut s f () du_iam;-%-}-Pm

m=0

say, and find an upper bound for |P,| for large n. We may suppose
n > 1> kfo. Since R,(z) is regular inside D(A, A, k), we may increase
the radius of the circular part of L from [ ton. Then the contnbutlon
of the circular part is

O{(n+1)! (ap)"+1e"n‘"‘1_} = Ofnt(op)"t1},
and that of the rectilinear parts is

@

dr} = 0{(n+ 1)' (ap)“+ln—"lr—3 f e-Tsinv Jp
0

{<n+ ! (opr1 f

n

n 1

Thus P, >0, and (8.11.6) gives (8.11.4), subject to the conditions

(8.11.5).

Suppose now that ¢ varies imr any region 7' defined by [¢| < 8 < A,

0 < p; < p < pg. Then we can choose » and ! so that the conditions

(8.11.5) are satisfied for all ¢ of 7', and the integral (8.11.4) is then

uniformly convergent in 7', so that it defines a function a(t) regular
in T. We have thus proved (ii) and (iii).

If w is positive, z=re¥, r >k, |6] < 8, and ¢t = wfz = pe'®, then

|$| < 3, so that
w 1 uz\ e
“(‘z‘) =2m )/ (a)zd“
L

4780 ’ o
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When u describes L, v = uz/w describes C(v+6,v—8,1/p) or L’, and

w 1 ewlz
a(-z-) =giff(v) " dv
L

We choose r; so that ¥ <7, <r. Since l/p > k/(op) > k, we may

replace L' by L, = C(w+06,v—0,r,).
We have then

f e‘wa(%)dw - J p—” dw% f f(v)e%——mdv

L f (v) o—1K1-v}2) _ =

2m Ll dw = f( ) —— v(z v) f),
Ly

‘provided that we may invert the mtegratlons, and this is so if the

double integral is absolutely convergent. We consider the circular and

rectilinear parts of L, separately. On the circular part

R(1—vfz) = 1—ryfr > 0,
so that its contribution is majorized by a multiple of f [v|7Y |dv| < 2m.
On the upper rectilinear part

wo wv ol .
am— = amu = }wr-+v, iR(—) = —w|-|sinv,
2 z 2

so that its contribution is majorized by a multiple of

—w —wlvlzlsinvl(‘lvl Ji Iszvl .
f" dwfe o] [o] [2]+ o] siny ~ %

and the lower rectilinear part may be dealt with similarly. Thus the
double integral is absolutely convergent, and this completes the proof
of the theorem.

Theorem 136 shows incidentally that at most one f(z) can satisfy
(8.11.1) and (8.11.2). But if we are concerned only with the uniqueness
of f(z), then we can prove more, and without reference to the theory
of summability. We need only suppose that f(z) satisfies (8.11.1) and
(8.11.2) in the angle |0| < 3=, instead of the larger region of Theorem
136. If f;(z) and f,(2) both satisfy (8.11.1) and (8.11.2) for |8| < i, and
9(2) = f1(2)—fs(), then

v l9(2)] = Of(n+1)! on+1p—n-1)
uniformly in 7 and . We take n» = [r/o], and a simple application of
Stirling’s theorem shows that [g(z)| = O{e~®-99} for every positive &
and |6] << }=. It follows, from familiar theorems of the Phragmén-
Lindeldf type, that g(z) = 0.
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Carleman has gone much farther, and found a necessary and sufficient
condition that

l9()] < otr™ (r=7,>0, |6 <4im)
should imply g(z) = 0. For suitably regular «,, the condition is the diver-
gence of 3 ;1. In our case this is effectively the harmonic series >nl

It will be observed that we prove the summability of the series in an angle
smaller (by 7) than that in which it is supposed to represent f(z) asymptotically.
The example of § 8.9(1), with 1/z for z, shows that this is a real limitation corre-
sponding to the facts of the case. There a(t) = ¢~%, and the integral

flz) = f ettt g
converges if |§| < }7 but not if }r < |0] < §n. If 2 is positive,

flz) =z J e U gy = 2 (:_1}31:5_%1 f e u? du

_ (—32)»
= «}z«/rr I,—(l:l—_m = ‘}24/17‘ E*(—iz),
where Ey(z) is Mittag-Leffler’s function. It is known that f(z) has the asymptotic
expansion
211 4!1
T2 2T

for |6] < §m, so that the series is asymptotic in an angle greater by = than that
in which it is summable. We could enlarge the angle of validity of the integral
representation of f(z) by taking it along a line making an angle with the real axis.

NOTES ON CHAPTER VIII

§§ 8.2—4. The first systematic account of the (E, ¢) methods was given by Knopp,
M2Z, 15 (1922), 226-53, and 18 (1923), 125-56; and much of the argument of these
sections is modelled on his. In particular Theorems 117-21 are Knopp’s.

The (E,1) method, and those derived from it by iteration, had been used
frequently before, especially for purposes of numerical computation. Examples
will be found in Bromwich, 62-6 and 196-8.

There are some passages in the first edition of Bromwich (302-10) which may
seem at first to contradict some of the assertions here and in § 8.5. The explana-
tion is that Bromwich, when he applies ‘Euler’s method’ to power series, does
not use the right definition. According to our definition 3 a,2" is defined by

Ya+Hayta,2)+ $ae+20, 2+ a2%) + .t

Bromwich, in effect, uses the identity
1 2z 22
agtayz+ay2i+... = aom-|—(ao+a1)m+(ao+2a1+a,)m+...,

valid for small 2, and then defines the first sum by means of the second. This is
a definition of an entirely different type, since it is not linear in a,, @, 2, a,2%,...;
and the odd results to which it leads show that it is not a happy one. Thus
Bromwich finds that 3, 3%2" is summable inside the circle on (—1, }) as diameter,
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but that 3 2-"z" is summable outside the circle on (%, 2) as diameter, so that
the region of summability does not include all the circle of convergence.

We add a remark concerning the calculations of Euler and Lacroix referred to
in § 2.6. No Euler transform of 1—1!+42!—3!4... is convergent, and it may
seemn remarkable that the method should have been applied to such a series
successfully. We may, however, explain Euler’s success as follows. If we write
a, = (—1)*n! = (—1)"4, and

2 op+liop 1
n=Sny  Opo= J'e—'t" dt, gy, = f etndt (p > 0),
» 0 2P 42P—1-1
then it is easily verified that 3 (—1)",,, is summable (E, 27+1—1) to
2 ¢ 2P+l por_ 1 ‘
e e~
1+¢ &, f 1+t d
Y 2?+2P~1—1
for p = 0 and p > 0 respectively; and if we add the results we obtain

et
et
in agreement with the B* sum found in § 8.11.
The remainders after N1 terms in the appropriate Euler transforms are
2 2p+1l.0P 1
g1 J‘ s (1—gH ’ 1 e_t(2p+1_ 1— )N+
14t +t 2(P+1}N+1) 14¢ 4
2P49P-1-3
which are O(2-N-1), O(e~?*2-N-1) respectively; and the Euler sums of the series
are O(e~2*2%). Thus the error in taking only the first N+ 1 terms of the first P
series, and ignoring the rest, is
O(2~N-1) 4 O(e—2¥ +12-P-1),
If, for example, we take N = 10, P = 2, we can easily prove that the error is
less than -001.

This is naturally not quite what Euler does, and it would not be a convenient
process; but Euler’s process of reiterated transformation is roughly equivalent.

§ 8.5. Borel’s earliest writings on dlvergent series, in his ‘Mémoire sur les séries
divergentes’ [A EN (3), 16 (1899), 9-136] and the first edition of his book, contain
a number of oversights corrected later by Hardy [T'CPS, 19 (1903), 297-321, and
QJM, 35 (1903), 22-66]. Here Hardy proves Theorems 122-7: these were
rediscovered, with more concise proofs, by Perron, MZ, 6 (1920), 158-60 and
286-310. Sannia, RP, 42 (1917), 303-22, has extended the theorems in various
directions.

Knopp, l.c. under § 3.7, observes that, since

2
e“‘(on—i-Al;!-{-...) = J‘e‘("‘")e—"(A,,+A,y+...) dy,
0

the B kernel of 04a,+a,+ ... is included in that of ag+a, +.... He gives a further
generalization in RP, 54 (1930), 331-4.

Theorem 128 is due to Knopp, l.c. under §§ 8.2-4.

§8.6. Hardy, l.c. under § 8.5, gives an example of a convergent series which
is not absolutely summable.
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§§ 8.7-8. The contents of these sections, except Theorem 130 and its corollary
Theorem 131, are substantially Borel’s. Theorem 130 was proved by Hardy, MM,
40 (1911), 161-5: the proof here is due to Landau, 4 M, 42 (1920), 95-8.

The region of (E,g) summability of f(z) may be determined similarly. If { is
the first singular point of f(z) on a radius from O, and Cp is the circle

lgl+2| < (g+D,
then the region is the set of points interior to all C;. It tends to the Borel polygon
IT when g— co. In particular (1) the series is summable (E, g), for some ¢, at all
points inside II, and (2) it is summable (E, g), for all ¢ > 0, at any regular point
on the circle of convergence. For all this see Knopp, lc., and Rademacher,
Sitzungsberichte d. Berliner Math. Ges. 21 (1922), 16-24.
Perron, MZ, 18 (1923), 157-72, has generalized Euler’s method as follows. If

Ym = 0, Svm=1 F(z) = 3 yma™t,
3 b, 2™ is the result of developing 3 a,{F(z)}**! in powers of 2z, and ¥ b,, con-
verges to 4, then we say that 3 a, = A(F). The method is regular, and succeeds
at every regular point on the circle of convergence. The (E, g) method corresponds
to F(z) = z/(g+1—gz).
§ 8.9. Hardy, MM, 43 (1913), 22—4.
§ 8.10. The three most elegant representations of (1 —z)~! in its Mittag-Leffler
star, viz.
i S TA+n) , im S g~tnlonyn ; Z___z”
@ I 2 Tam ™ O VTN O % 2 tavsy
all lead, after Theorem 135, to representations of a general f(z). The first is due
to Le Roy, AT (2), 2 (1900), 317-430 (323), and the second to Lindelsf, J. de M.
(5), 9 (1903), 213—21. The third is mentioned by Mittag-Leffler in his address to
the fourth international congress (Rome, 1908: see Att: del IV Congresso Internaz.
i. 67-85). In his series of memoirs published in AM between 1899 and 1904 he
uses the representation
— (tez)" o
l—z_f ¢ I‘(l+om)dt J.e“E,(t z) dt,
which is valid in the open region containing the origin and bounded by the curve
(soo2)’
r = (sec-) ,
o
where —}ar < 0 < }ar if 0 <a < 2 and —7 < 0 < 7 if « > 2. The proof
depends on the asymptotic properties of E (z). The region tends to the star if
« —> 0, but Mittag-Leffler does not, in these papers, give any simple formula valid
throughout the star.
The behaviour of Mittag-Leffler’s function

16 = Ble) = D s,

for large z = re¥, where —7 < 8 < 7, may be determined as follows. We have
1 1
—_— e —— Uy —an—1
Tlan+1) ‘zm'fe uent du,
where u = pe'$, u—o" — ¢—onlogy, log u has its principal value, and the contour C
leaves the origin on its left and goes to infinity at each end in the left-hand half
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of the plane. We consider two positions of C. In the first, C;, it is formed by
parts of the circle p = 1 and the radii |¢| = 37 +8 > }=. In the second, 0, it is
everywhere at a distance from the origin greater than (2r)*, so that all zeros of
u*~—z lie to its left. Then '

1 e¥y o1
f(z) f 2 u“ du = — —‘;_—zdu,

and hence, by Cauchy’s theorem,

s =g [ 25

Co

where the R are the residues of the integrand at the poles, if any, which lie

between C, and C;. If § is chosen so that no pole lies on C,, and is sufficiently

small, then these poles are given by u = rli@+2km)/= where k runs through
integers satisfying

du + 3 By = I()+ 3 Ry,

(1) —Yam < 0+2kn < }am;
and OCRk — exp{rllae‘i(HZk’r)la}
is one of the values of e*'’*, Now
_ 1 { 1 wue u(P-1e ure } ot
I(z) = ~%m ;-}--z;-{—... 7 P u—2) u*le¥% du
[
? -
== 2. Ty Eote)
meml
1 ypota-len ( 1 )
where RP(Z) = —217—112_”! —m— du = O |z|"+1
0
for large z. Thus I(z) has the asymptotic expansion
21 -2
@) () ~ :

Tl—a) I'l—2x)

We must now distinguish the cases « < 2, « > 2. Ifa = 2then f(z) = cosh+%,
and tends to infinity in any direction except that of the negative real axis.

(1) If 0 < « < 2 and 3anm < |0] < =, then there is no k satisfying (1). In
this case E,_(z) has the asymptotic expansion (2). If, on the other hand, [0] < }am,
then we have to take account of the exponential term R,, and
(3) B (z) ~ &
when z — o0 in the angle |8| < $or.

(2) If « > 2 then we have always to take account of at least one exponential
term. The modulus of such a term is

! S oxP (rll“ cos

0+ 2k11),

and this is larger for £ = 0 than for any other relevant k, except when 0 = 7.
Thus (3) holds for all  except @ = #. When 8 = « there are two terms of equal
importance, with & = 0 and k = — 1. These combine to give

(4) 2 {exp(rV=einlo) | exp(rtee~iml*)} = ;2‘ exp (rll‘“ cos Z)cos(rl.’“ sin E) ,

and E (z) behaves approximately like this function.
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Wiman, AM, 29 (1905), 217-34, has shown that all the zeros of E (z) are real
when o > 2, and all but a finite number in any case.

We may also use the integral representation of E_(z) to prove that, as was
stated in § 4.11, 3 2" is summable (M) to (1—z2)~1 throughout its Mittag-Leffler
star. For if 0 < |6| < 7, and « is sufficiently small, then |+ 2k7| > }am for all
integral k. Hence

1 1 et( ue 1 1 =z e¥ 1—u~
Bl 12 = om f O L= f W w—
round G, and this tends to 0 with « for all z of the star, and uniformly in any
closed and bounded region interior to the star.

§ 8.11. Watson, PTRS (A), 211 (1912), 279-313. Seealso F. Nevanlinna, ASF,
12 (1916), no. 3, and Carleman, Les fonctions quasi-analytiques (Paris, 1926), ch. 5.
The ‘Phragmén-Lindelsf’ theorems required will be found in Titchmarsh, Theory
of functions, 176 et seq.



IX
THE METHODS OF EULER AND BOREL (2)

9.1. Some elementary lemmas. In this chapter we shall be
concerned primarily with Tauberian theorems for Borel and Euler
summability. We begin with three elementary theorems concerning the
exponential and binomial series, on which much of our later work will
depend. Their content is familiar.

TaEOREM 137. Suppose that x > 0 and

(9.1.1) Uy = Uy () = e4:% (m =0,1,2,..),
so that Y u,, = 1. Then
(1) the largest wu,, t8 uyy, where
(9.1.2) M = [z],
two terms, uy_; and uy,, being equal when x is an integer;
(2) of
(9.1.3) m= M+h
and 0 <& < 1, then
(9.1.4) mgaxu'” = O(e~7%),
where y = 18%;
(3) if |
(9.1.5) P <i<i,
then
(9.1.6) > u, = 0(e™"),

1a>zt
where 7 18 any number less than 2{—1;
(4) if A > 0, then

(9.1.7) > U, <e
[h]> Azt
Sor x > zy(e), A > Aq(e);

(56) if |h| < af then

s e b ool

where
(9.1.9) c=1%;
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(6) the estimates (9.1.4) and (9.1.6) remain valid if u,, is multiplied
by any fixed power of m.
THEOREM 138. Suppose that ¢ > 0 and

(0.1.10) Uy = ty(n) = (q+1)-"( )q"—m O<m<m),

— n — —_—
8o that > u,, = (g+1) ”z (m)q” m=— 1. Then
(1) the largest u,, 18 uy, where

(9.1.11) M= [ﬁ‘_'"_l]
; qg+1
two terms, uy,_, and wuy, being equal when (n+1)/(g-+1) is an integer;
(2) clauses (2)-(8) of Theorem 137 hold with

9.1.12 =4+l
( ) 2%’

some posttive y = y(q, ) in clause (2),1 and n in the place of x.
THEOREM 139. Suppose that 0 < k < 1 and

(9.1.13) U, = Upy(n) = k"+1(1:)(1—k)"‘—“ (m = n),
so that
S, = Ic”+1{l+(n+1)(1 k).g.(”Jfl)__("_@(l—k)u-...} —1

Then (1) the largest u,, ts uy,, where
(9.1.14) M = [nfk],
two terms, uy,_; and uy, being equal if nfk is an integer;
(2) clauses (2)—(6) of Theorem 137 hold with
__k
2(1—k)’
some positive y = y(k,d) in clause (2), and n in the place of .

We shall prove Theorems 137 and 139, which are the most impor-
tant for our present purposes. The proof of Theorem 138 is like that of
Theorem 139, only a little simpler.

(9.1.15)

9.2. Proof of Theorem 137. The first clause of the theorem is
obvious because «,,/u,,_, = z/m.

1 We do not assign a definite value to y in this case.
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Next, we divide > u,, or > u,,, into the five pieces

9.2.1
( ) —M<§<—8x+ —8x<§< z‘+lhl§x{+z‘<%<8z+h>§z

M1 M;-1 M, © :
_mzo +m=zM1 +m— s + —%.4-1 +m=§4+1= S-Sy By Sty
(z being large enough to make 2% < 8x). Then
(9 2.2)
= [#]—[82], M= [z]—[2*], My = [z]+[a}], M, = [z]+[8x].
It is plain that
(9.2.3) 8, = O(xuy,), S, = O(xuy,,), Sy = O(xuy,,).
Also M;+2 > x+-8z, and so

x2
(9.2.4) 8 = uM¢+1<l + M (M 243" :
1
< uM‘{l +i1_4-8—)+(1+8)2+ } Obae)

Hence, in order to prove clause (2) of the theorem, it is enough to prove
that

(9.2.5) Uy, = O(e7%), Uy, = O(e~7%).
Now u e—zxM < e~z+Ma L "
a7 74
and z—dx—1 < M, = [x]—[dx] < z—dx+1.
Hence

-8z +1 z-8z
— —dz z — -8z 1 — —A
(9.2.6)  wuy, = O{e (x—-Sz— 1) } O{e (1—8) } O(e—Ax7),
where

2
(9.27) A=06—(1— 8)log1 5= -{—2 3—{-3 4+ . > 38%
Similarly
(9.2.8) g, = Ofese( 2 “M} = O(e~4"=)
ne. Ms — { 1+8 - )
where
9.2.9) A’ 8+ (14-d)log(1+38) = #_& & . > 182
(92.9) &' = —s+(1+8)log(1+8) = 2T 2 sy

It follows from (9.2.6)—(9.2.9) that (9.2.5) is true, with y = 482, This
proves (9.1.4).
We could prove (9.1.6) similarly, but it is shorter to base it on (9.1.8),
which we have to prove in any case. For this, we write
r=M+f (0<f<I1), m=M+h,
logu,, = —z+(M-+h)logz—log I' M +h-1),
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and approximate to log I'(M +%+1) by the formula

log I'(y+1) = (y+3)logy—y-+4log 27+ O(y-1).
A simple calculation gives

logu,, = —%10g2,,M__2_}';7+O(Ihl+l)+0(|k]3)T

Since [k| = o(z), |h|* = o(x?), this is equivalent to (9.1.8). Also, since
2
M-t—z—t = Oz, exp( h —E:-:) = exp{O(if)} = 1+0( )

we can replace M by x in (9.1.8) if we prefer to.

It is plain from (9.1.8) that u,, and u,,, are O(e=="): 7 may be any
number less than 2{—1. Tt follows that S, and §; are O(e~"); and this
proves clause (3) of the theorem.

As regards clause (4), the sum is

2 h R
o 3 w112y By oo,
MWr<h<at z oz
and the first term here is

O{x-* f e¥12z gt | g4 f eIt df |-t f e~¥i2zg3 dt}

ANz Az Avz
The last two terms are O(z-%), and the first is

O(f e—iv* dw)
A
which is small for large A.

There remains clause (6). It is plain that, when %, is replaced by
mEu,,, our estimates of 8, S,, and S, are affected only by a power of z,
and that these sums are stlll of the orders required. The same is true
of uyy,; and

Sy = (My+1)Euy, ,+ (M4+ 2)Xupr 19t

3K 2
M4+2 (M oy T }

< (@M uM.+1{1 +

< (2M, )K“M.{ K+ } O(z%uy,).

1 +3 RESE +s R
Thus 8 also is of the order required, and this completes the proof.

t We must write |k|+1, not ||, in the first error term, in order to include 4 = 0.
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9.3. Proof of Theorem 139. The first clause of the theorem follows

from
Upy m

Upy M—N

(1—k).

The remainder of the proof follows the same lines as that of Theorem
137, though the calculations required are a little more elaborate.
We divide Y u,, again into five pieces: M,... are now

o= [3]-ton) 3= ]I o, = [5]+ 00

= [3]+ o)

we may suppose 8 < k~1—1. Asin§9.2,
8, = O(nuyy,), S, = O(nuy,,), Sy = O(nuy,)-
Also M,+2 > n(k—1+38), and so

Uy M o 14+k3 o oy k%
v =P < s = e

say, if m > M,+-1, and
85 < up {14+ (1—8,)+(1—8,)2+...} = Ofauyy).

Thus we have to prove, as in §9.2, that u,,, and u,, are O(e™r") and

=1-3,

that wuy, and uy, are O(e—").

We have In+1 Z (Z)(l—z)m—n =1

m=n

for every ! between 0 and 1, and so

_ n+lm _ pLymen {c‘n+1 1—k\m-n
T i =

If m = M 4-[dn], this is O(6"), where
k (1 - k)llk—l:ts

=00 =311

Now 6(l) is 1 when I = k, tends to infinity when I >0 or /> 1, and
has a single minimum given by I = k/(14-k3). Also

0'(k) = +8/(1—F) # 0.
It follows that 6(l) assumes values less than 1 for values of  on one

side or the other of I = k (according to the ambiguous sign). Hence we
can certainly choose I so that § < 1, and thus uy, and uy, are O(e—).
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This disposes of 8; and S,. We now suppose |k| < né, write
n
M= [Z
log u,,, = (rn41)log &+ (m—n)log(1—k)+log I'(m+1)—log I'(n+1)—
—log '(m—n+1),
and approximate again by Stirling’s theorem. We find that
hk?
2(1—k)n +

+o(LH) o[,

and this is equivalent to (9.1.8), with the ¢ of (9.1.15) and the M of
(9.1.14). The rest of the proof does not differ materially from that of
Theorem 137.

|=3-f o<f<n. m=dyh,

logu,, = —}log 2rn-+logk—34log(l—k) —

9.4. Another elementary lemma. We shall also use another
elementary lemma. Here sums without limits run over —oo0 < & < c0.

THEOREM 140. S e—chin = J ("7")4—0(1)

when n — oo, uniformly in any finite interval of positive c.

For the series is 1428, where
@ +1

S = S —chin — ~ct®ln Jt 5 —chin__p—cln dt
; e f e + ; J (e e~ofin)

1

1
1) frmase
0

say. The integral here is less than 1. Also
_ ¢
e—chiin__g—ctiin — 2c wue—cuin Jy < = (t l)e—c(t—l)‘/n
n

>

h
for 2 < b <t < k-1, and is less than 1 in any case; so that

T <1+ fnf f (t—1)e~ct-Vin g — 3,
1

~ We could obtain a much more precise result by using the formula

S e Win — J (_"%’Z) Z e~mihinfc.
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9.5. Ostrowski’s theorem on over-convergence. A famous
theorem of Hadamard asserts that if 3 b,, 2% is an integral power series
with a finite radius of convergence, and ¢(m—+-1) > cd(m), where ¢ > 1,
then every point on the circle of convergence is a singular point of the
function represented by the series. The condition on ¢(m) has been
generalized widely, Fabry having shown that it is sufficient to assume
that m—1¢(m) - co. Here, however, we are concerned with a generaliza-
tion in a different direction due to Ostrowski, which Zygmund has
shown to be deducible from theorems concerning Borel summability.

We say that a power series > a, 2" has a gap (n,,n) if @, = 0 for
e <0 < ny

THEOREM 141. Suppose that A > 0. Then there is a number
8 = 8(A) > 0 such that, if

(i) 3 a,z" has an infinity of gaps (ny, ny) for which
(9.5.1) npfng = 142 > 1,

(i) 4, = ay+a,+...4a, = O{(1+8)},
(iii) ¥ a, is summable (B) to sum A, then
4, > 4.
Given A, we can choose £ > 0 so that
(9.5.2) 1—€ > (140, 1HE < (14,
and then 6 so that

(4:8)2
(9.5.3) 0<8 <& 8—3(1+8) <o
We write
Ghl (1+8) zn
(9 — ( S o> + ) = e*(P+Q+R),

n < (1-€)x (1—§):c n>(1+£)
where P = P(£,3),....

— §+3 _ o
y=(+de, =i <L (-n(+d)=1-f
then P(¢, 8) = dTg—z-dz m ] Z.:
n<(1—§)x n n<(1-'q)un’
— OfeSz—in'y) — (492 }
= O(e**#Y) = O(exp {Sx 3175

by Theorem 137 (9.1.4); and R(¢,8) has a similar bound with £—8 in
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place of £48. Hence P—>0, R~ 0 if ¢ and § satisfy (9.5.3). In
particular this is true when 8§ = 0; and, since

P(£,0)+Q(£,0)+R(£,0) =1,
it follows that

(9.5.4) Q(,0) > 1.

We now fix a £ and a § > 0 satisfying (9.5.2) and (9.5.3), so that
§ = £(Q), 8 = 5(A), take

(9.5.5) x = \/(n;my),
~write
eZA(x) = e_sz”S; = e-z{

a+ée
| = P+e+R,
a<1-€x (A-fiz a>1+€x
and suppose that (ii) is true with our choice of 8. Then P’ and R’ are
majorized by multiples of P and R, so that P’ - 0, R’ > 0; and
therefore, by (iii),
(9.5.6) Q —>lime=A(x) = 4.
But
(1—&)zx > J(%‘) > ny, 148z < J(A+)nn} < ny,
by (9.5.1), (9.5.2), and (9.5.5), so that every 4, in @ is 4,,. Thus

(9.5.6) is 4, Q(£,0) > A, and therefore, by (9.5.4), 4,, > 4.
We can easily deduce Ostrowski’s and Hadamard’s theorems.

THEOREM 142. If ¥ a, 2™ has an infinity of gaps satisfying (9.5.1), and
its sum f(z) is regular at a point z, on the circle of convergence, then the
partial sums s, (z) converge for z = zy, and uniformly in a neighbourhood
of z =z,

We may suppose z, = 1. Then 4, = O{(1+38)} for every positive 5.
Also Y a, 2" is summable (B) for z = 1, by Theorem 134, and uniformly
summable in a neighbourhood of z = 1, so that (9.5.6) holds uniformly
in the neighbourhood. Thus the conclusion follows from Theorem 141.

Hadamard’s theorem is a corollary of Ostrowski’s. We may suppose
the radius of convergence to be 1, and it is enough to prove that z = 1
is a singular point. If we write the series as 3 @, 2", then a, = 0 except
when 7 is of the form ¢(m), and every term whose coefficient is not 0
is the beginning and end of gaps satisfying (9.5.1). If 2 = 1 were a
regular point, then the series would converge at points outside the circle
of convergence; and therefore z = 1 is singular.
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'9.6. Tauberian theorems for Borel summability. We pass to
the principal topic of the chapter. Our main purpose in this section
and the next is to prove the theorem concerning Borel summability
which corresponds to Tauber’s Theorem 85, viz.

THEOREM 143. If > a, = 4 (B) and
(9.6.1) a, = o(n-t),
then Y a, converges to A.

Actually we shall prove a good deal more. Later (§9.13) we shall
show that the o in (9.6.1) may be replaced by O; but this theorem
(Theorem 156) is & good deal harder. All our conclusions will be true
a fortiori, after Theorem 128, if > a,, is summable (E,g). We need three
lemmas.

THEOREM 144. Suppose that
9.62) a>—1, O0<B<1, p>—1, O0<H<I
that Ak is defined as in §§ 5.4-5;1 and that

(9.6.3) A2 = o(n®).

Then

(9.6.4) Ax+B = o(nr+B)

and

(9.6.5) AxB— A2+ = o(|m—n|PnP)

uniformly for 0 < (1—H)n < m < (1+H)n.
We have already proved (9.6.4) in §5.7.1 For (9.6.5), we use the
formula

a+f — 1 S P(”‘P’f‘ﬁ) «
(9.6.6) Ag+ I‘(B)pZoI‘(n—p-l-l)A”'§

There are two cases, according as m > n or m < =, and the proofs in
these two cases differ only trivially. We take the case m > n. Then

T'(8) (A%+B—Az+P) = i P(m—p-+f) 4o

p=nt1
< [Dm—p+B) Tn—p+h\ 4 _
+p=o{f‘(m—p+l) I‘(n—p+1)}‘4p 8 +S;,

say. Here, first,
8= ofw 3 (m—p+1$-1) = oftm—n)imw}.

1 And 43! = a,, as in § 5.4,
t Strictly, for p = «; but the proof for general p is substantially the same.
§ (9.6.6) is (5.4.8), extended, a8 in § 5.5, to general k and &'. '
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Ifg=1,8,= 0. If B < 1, then the coefficient of A% in S, is négative;
and

g i {P(n—p+ﬁ)_1‘(m—p+ﬁ)

? F(n—p+41) T@m—p+1)

where S; and 8, extend over the ranges 0 < p < jn and }n < p <
respectively.

In §; we may replace p# by n», and then sum over the whole range
0 < p <n. Thus

MR =]

(3- 3 )0 - 43

q=0 g=m-n =0 g=n+1

= o{nﬂm—n ggi’fi} = O{npjg:(q—kl)ﬁ“l} = of(m—n)Pns}.

}o(m = 848,

Finally, in S,

I'(n—p+B) T(im—p+p) _
Tn—p+1) T(im—p+1)

= O{(m—n)nf-2+ O(nB-2) = O{(m—n)nf-2%}.
S = ot(m—n)nﬁ-ngﬂppj = of(m—n)nf+-1}

= (n—p)f-1—(m—p)F-1+O(nk-?)

Hence

= 0‘(m; )l‘ﬂ(m—n)ﬂw’} = of(m—n)Pnr}.
x‘n+k

Tonen 145. If k> 0, 2>co, then % > gy > 1

For the sum is

x
e—T

— -—1— i —)k-14n —ﬂ i — )1 -—-__I__J k—lo—u J 1
P(k)Zn!J(x £ye-1g dt_P(k)f(x b)-teldt = et du—1.
0 0

0

THEOREM 146. If k > 0, and Z an% 18 convergent for all t, then

n+k

. A "
O87) €= A S =T E f @ttt 3 Ay
0

1 Since 0 < m—n < Hn < n.
4780 P




210 THE METHODS OF EULER AND BOREL (2) [Chap. IX

If we write x—u for ¢ and multiply by e®, the identity becomes

an+k 1 v bl (x__u)n
(9.6.8) ZA"I‘(n—}—lc—f-l) I,(k)fu 1¢ ZA” —-du.
0

The left-hand side of (9.6.8) is

gtk & T—p+h)
2, Tn+k+1) £ T)I(n —p+1) »

S I(n—p+Fk) 2,
I‘(k) Z Z I'n+k4+1)I(n—p+ 1)

while the coefficient of 4,, on the nght-hand side is

z

f uk-Y(x—u)Pet duy =

wrt Yz —u)? du

I‘(k)r<p+1)z f
= Z T(g+#) zI+P+k
T(k) £, Dlg+p+k+DIG+1)"

_ @& To—ptk)

= Tk £, it b+ )T n—p+1)

The identity may be regarded from another point of view whose full significance
will appear in Ch. XI. Since, generally,

xn x‘ll
e E u”"—%—! = E (—l)nA"uom,
the identity is

ok Z (—1)"A"Bofr,;= I%Bf(x_t)k_l{z (‘l)”A”A":T”!} a

_ I(n41) Ak — Ck
" I(n+1+k)" " L(k+1)
and Cf is the k-th Cesaro mean of 3 a,; and this is

_wlntk+1) amtk zntk
2, R A B = 2 VA e i ey
Thus the identity is equivalent to
T+ 1)'(n+1)
F(n+k+1)

1
T'{E)C(p+1)

where B

(9.6.9) ACE = Avd,.

9.7. Tauberian theorems (continued). We can now prove
THEOREM 147. Ifp > —1,

(9.7.1) a, = o(nP),

and Y a, is summable (B) to A, then 3 a, is summable (C,2p+1) to A.
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The theorem shows that a series which is summable (B) and of finite
order (i.e. a, = O(nK) for some K) is necessarily summable (C, %) for
sufficiently large k. Theorem 143 is the case p = —3.

We assume, first, that

(9.7.2) Ak-B = o(mp),
where k>0, 0<BKI, p>—1, p+B > 0:
this reduces to (9.7.1) for £ = 0, 8 = 1. By Theorem 144,
(9.7.3) Ak =ometB) (m < n), Ak = o(mrB) (m >n),
and
(9.7.4) Ak — A% = o(|lm—n[Pnf) (Im—n| < Hn).
We may take 4 = 0. Then, by Theorem 146, with z = » and m for n,

—_ p—n k —,-zm . - - LY . —
(9.7.5) S=e ZAmP(m-#_#k-i—l) = o{n kof (n—t)k ldt} o(1).
We write
(9.7.6)
-n 4k -n ——‘m
§ = edh > P(m+k+l) Fen D (A~ n Fmrrr) =t

n+nf
(9.7.7) Sz=e-”( S +3+ 3 ) S 4 S S,

m<n—né n-nl m>nt+nd

where $ < { < %. Then (9.7.5) is
(9.7.8) S+ 8P+ 8P+ 8P = o(1).
Here, first, 8, = n*4%{1+0(1)},
by Theorem 145. Secondly,
S = O(e-nnPHg Z %) = O(e™"),

m<n—né

where 7 = 7({) > 0, by (9.7.3) and Theorem 137 (3). Thirdly, after
(9.7.3) and Theorem 137, (3) and (6),

S = O(e-" mpb " )
* m>n+né P(m+k+1)

= O(e-" ot " ) O(e~");
m>;e:-n§ P(m+1)
and it now follows from (9.7.8) that

(9.7.9) n~*A%{140(1)}+ 8P = o(1).
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It remains to discuss S{¥. Here we use (9.7.4) and Theorem 137 (5),
which give

n+nt 8 nm n+nt Bnm
@ — ol o~ B | fe-npe—k —nB
St o{e npp Z |m—mn] I‘(m-{—lc—l—l)} o(e “np Z |m—n| m!)

n—nt

lrl<n¢
— o(nP"“* [ 1gge-mn dt) = o(mek+if),

Hence, finally, (9.7.9) becomes

(9.7.10) n*A%{1+4-0(1)}+o(ne-¥+F) = o(1),
ie.
(9.7.11) Ak = o(n*)4-o(ne+iB),

Taking £ = 0, B = 1, so that a, = o(»n®), in (9.7.2) and (9.7.11), we
obtain
(9.7.12) A4, = o(1)+o(nrtt) = o(nett).

Next, we suppose that v8 = 2p-+-1, where » is an integer and 8 < 1
and prove that
(9.7.13) ATB = o(npi+ith)
for 0 < r < v. First, (9.7.13) is true for r = 0, by (9.7.12). We assume
it true for r = 8 < v, and use (9.7.2) and (9.7.11), with £ = (s4-1)8 and
p+%-+3sB in place of p. Then (9.7.11) gives

APHB — o{n@+VB} |- ofnp+i+iE+DB) — ofpe+i+iE+1B)
since e+1)B < 3B = pt+4;
and this is (9.7.13) with r = s+ 1.
Thus (9.7.13) is true generally. Finally, taking » = », we find that
Azt = o(n+1),
i.e. that Y a, is summable (C, 2p+1) to 0.

We have stated the theorem for summability (B), but it is equally
true under the slightly weaker hypothesis of summability (B’). For,
if 3 a, is summable (B’), then 0+a,+a;+... is summable (B), by
Theorem 126, and the terms of this series are of the same order as those
of the original series. Hence it is summable (C, 2p+1), and, therefore,
by Theorem 47, the original series is summable (C, 2p4-1).

Incidentally we have proved

THEOREM 148. Ifa, = o(1) and 3 a, is summable (B), then 4, = o(n}).

We shall need this theorem later.
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9.8. Examples of series not summable (B). Theorem 147 shows that no
series of finite order can be summable (B) unless it is summable (C). On the other
hand, we can find examples of series, summable (C) (and so of finite order) but not
summable (B).

(i) The series 3 n>—1e4#n* where 0 < o < 1, 4 > 0, is summable (C, k) for
every positive k, by Theorem 84, but is not convergent. If a < }, then the
general term is o(n—1); and therefore, by Theorem 143, the series is not summable
(B). A fortiori, by Theorem 128, it is not summable (E, g) for any g.

(ii) If @ = } then the general term is O(n—+) but not o(n—¥). The conclusions
of (i) are still correct but (in default of direct analysis) we must appeal to the
more difficult Theorem 156, which we have yet to prove.

(iii) Suppose that 4, = (—1)™n when n = m? and 4, = 0 otherwise: the
series is then that derived from

—z(1—x)4 2241 —2)— 32%(1—=x)+...
by writing it as a power series and putting z = 1. If N? < n < (N+1)3, then

1 N
LY S _ —_1Wa — of2) - -
CUA) = (= 1428+ . +(~ "N} = 0(Y) — o),
so that the series is summable (C, 1) to 0; but it is not summable (B). In fact, if in
m3
S(z) = e~zz (—Lym s

we take £ = N*and m = N4y, then it is easy to show, by use of the approxima-
tions of Theorem 137, that S(IV?) is dominated by the terms for which [u| < N#,
where 0 < 8 < }, and that

S(N?) = (=¥

At — —au?
J@m) (—1)re~%+o0(1)
lul<nB
assumes values of alternating sign, numerically greater than }, when N —» co.

9.9. A theorem in the opposite direction. The examples of the
last section show that summability (C) does not necessarily involve
summability (B), and a fortiori that it does not involve summability
(E,g) for any ¢. It is natural to ask what strengthening of the hypo-
thesis is necessary to secure such a conclusion, and the simplest theorem
in this direction is as follows.

THEOREM 149. If
(9.9.1) oid) = ottty _ 4 o),

n+1
then Y a,, is summable (E,q) to A for every positive q, and a fortiori
summable (B).
We may take A = 0, when, by (8.3.4), we have to show that
AL = A,+A,+...+4, = o(nt)

implies

1 S [n n
m=0
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here v,, = v,,(n). The largest v,,, say vy, is given by (9.1.11), and, by
Theorem 138 (2),

(9.9.2) v, < vy < Hnb,
where H is independent of » and m. We choose u so that
(9.9.3) |Ap+Apt.. 4, <et

for » > p > u, suppose » so large that M > u, and write:
n—1 M n
(@) — ?, A Sl S S S )
AP = (T34 2 Jondn = ScHSHS,
say. Then, since v,, decreases on either side of m = M, we have
1Sp] < vpr.e Mt < He, 185] < vyg-ent < HG;
by (9.9.2) and (9.9.3); and S; — 0 when u is fixed and n» - co. Hence
AL < 3He for sufficiently large n.
Theorem 149 is a best possible theorem in the sense that the o of
(9.9.1) cannot be replaced by O. This is shown by the series of § 9.8 (iii):

we have seen that in this case CL(4) = O(n~*), but that the series is
not summable (B).

9.10. The (e, ¢) method of summation. Our primary object in
the rest of this chapter is the proof of Theorem 156, the generalization
of Theorem 143 in which o is replaced by O. The proof is rather difficult,
and will be simplified considerably by a preliminary study of some other
methods of summation. These methods appear here as auxiliaries, but
they have also some independent interest.

We shall be concerned primarily with delicately divergent series,
among which we distinguish three classes, the class P for which

(9.10.1) a, = o(1),
the class Q for which

(9.10.2) A, = o(nt),
and the class R for which

(9.10.3) a, = O(n-1).

It is plain that P includes R, while Q does not (and a fortiori does not
include ). We shall, however, find that all series of P8, summable by
any of the methods which we are considering, belong to Q. We have
seen alreadyt that this is true for series summable (B).

We shall often use a number { which, as in §§9.1-3, lies between %
and §. We shall be dealing, as there, with sums with respect to 4, or

t See the last remark of § 9.7.
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integrals with respect to ¢, in which the contribution of the parts

[h] > nf, or |¢| > 2%, is O(e—"), or O(e~="), where 7 = 5({) > 0. These

‘tails’ of the sums or integrals will therefore be trivial, and we shall

hold ourselves at liberty to reject or retain them at our convenience.
We define summability (e, c), in the first instance, by saying that

(9.10.4) Sa,=A (ec)

means

(9.10.5) A/ ("_%) Z e-chingd . > A

when n —c0. Here ¢ > 0, the variable of summation 4 runs from —oo
tooo, and 4,, is to be interpreted as 0 when m < 0. It is, however, usually
convenient to vary this definition by introducing a continuous para-
meter . We define A(t) as 4, when n < ¢ < n-1, and take

(9.10.6) J (%) f <Pl d(z-t) dt — A}

when x — 0o continuously, as an alternative definition of summability.

We begin by proving

THEOREM 150. Ifa, = o(1), and Y a, is summable (B), (E, g), or (e, c),
in accordance with either of the definitions (9.10.5) or (9.10.6), then
A, = o(n?).

We proved this for B in §9.7:1 a fortiori, after Theorem 128, it is
true for (E,q). We have therefore only to prove it for series summable
(e,c). We take the first definition, the proof for the second being
similar.

After Theorem 140,

4, [(£) 3 eon = a,q1-+o1),

and therefore, if (9.10.5) is true, ‘
(9.10.7) A/ (:_n) S (Apn— A = A4-0(1)—4,{1+o(L)}.

Since 4, = o(n), A4,,; = o(n+|k|), we may neglect the terms for
which |k| > nf; and 4,,,—A4, = o(|A]) in the remainder. Hence the
left-hand side of (9.10.7) is

o(n-t Y |hle—ch'in) — o(n—* f [t|e~ctn dt) = o(n~t.n) = o(nt),
and therefore 4, = o(nt). .

1 Here ¢ runs from —o0 to co. } Theorem 148.
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. Next, we prove

TaEOREM 151. If A, = o(¥n), then summability (B) is equivalent to
summability (e, ) by either of the definitions (9.10.5) and (9.10.6).

We prove the implication B — (¢, }): our arguments will be plainly
reversible. We may suppose 4 = 0.

(1) We prove first that

nm
(9.10.8) en z Ap s = o(1)
implies
(9.10.9) 3 oMy, . = o(vn)

when n — oo by integral values. We may neglect the ‘tails’ of the sums,

for which m = n-+hk, |h| > 2%, and use the approximation (9.1.8).
Then (9.10.8) is

(9.1010) > e—h’lzn{1+o(3"7""l)+o(%f)}An+h = o(vn),

and A4,,, = o(v¥n). Hence the O terms in (9.10.10) give
__1_ —3[2n } _l_j —{2n 4|3
o{\/nfe (v del, ol [ eemmisp as

respectively. Since these are o(vn), we obtain (9.10.9).
(2) Next, we replace (9.10.9) by

(9.10.11) f e d(n4-1) dt = o(Wn).

The difference is
h+1

(9.10.12) > f (e-P*12n—e~I2n) 4 (n+-t) d,
h

and here again we may neglect the tails and suppose A(n-t) = o(vn).

Any part of (9.10.12) in which 4 is bounded is plainly o(vn), so that
we may suppose & and ¢ large. Then

e~Wlen__o-ti2n — O(Me—l’lﬁm)’
n
and (9.10.12) gives

o(n‘* J e~t'8n|{| dt) = o(¥n).
Thus we obtain (9.10.11).

(3) Finally, we replace the n of (9.10.11) by a continuous z. If
z = n-+f, where 0 < f < 1, then the integral in (9.10.6), with ¢ = £, is

f eTRONA(nA-f+1) dt = f e - A (n+-t) dt,
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and what we have to prove is that
f {e—(l—f)’/2(n+f)_e—¢’I2n} A(n-+t) dt = o(vn).

We may again neglect tails, replace 4(n--t) by o(vn), and suppose ¢
large. We have

e—4-MHn+N) _g-2n —. f di{e—(l-—w)'la(n+w)}
w

for a w of (0, 1), and this is

o(e—a-w)’lz(n+w)‘|;_—l_*:)l n 2((21@2;2}) - 0{(% + ’tz—zz)e-"/"'“}.

Hence our error is

o(.}n f e—F1n | dt)+o($ j e-"fanltht) = o(vn)+-0(1) = o(vn),

and this completes the proof.

If a, = o(1), and the series is summable, then' A4, = o(vn), by
Theorem 150, and the result of Theorem 151 holds @ fortiori. Through-
out the rest of this chapter we shall suppose that a, = o(1), not
troubling to ask whether this hypothesis is essential; but there is one
place in Ch. XII (§12.15) where it will be essential to have proved
Theorem 151 without it.

THEOREM 152. If a, = o(1), and ¥ a,, is summable (E,q), then it is
summable (e, c), where ¢ = (q-+1)/2q, to the same sum; and conversely.

We write

4

r =

1 1
M= ﬁ—] m=M+h, r=_L_
[9+1 ) + g+1
and we may then replace the Euler mean of 4,, by
- 1 n n-M-h 4
Xn (q_,_ l)nlh;;(M_f_h)q -M+h*
Here, after Theorem 138,

q .
g+1

R = o (B2 o)

and it follows, as in the proof of Theorem 151, that x,, - 4 is equivalent
to

1 ;
Tow) D e Mgy > A,

This is effectively (9.10.5), with ¢ = (g+1)/2¢ and M in the place of n.
Theorem 151, with a,, = o(1), corresponds to ¢ = co.
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_If ¢ = (g+1)/29 then c decreases from oo to 4 when g increases from
0 to co. If we suppose a, = o(1), and combine Theorems 152 and 118,
we find that if @, = o(1) and } < ¢’ < c, then summability (e, c) implies
summability (e,c’). We shall, however, see in §9.11 that this theorem
is incomplete, the result being true for 0 < ¢’ <ec.

9.11. The circle method of summation. We shall say that
(9.11.1) Sa,=A4 (v.k),

where 0 < k < 1, if (i) 3 @, 2" is convergent for || < 1, and (ii) the
Taylor series for f(1—k-+ky), viz.

(9.11.2) Z&%”—k—) (ky)» = 3 by™

is convergent for y = 1.

Here B,, = by+b,+...-+b,, is the coefficient of y™ in the expansion, for
ly| < 1,of A—y)Y(1—k+ky). Ifx = 1—k-+kythenl—z = k(1—y),
and so

b [iEa]_~[rE ]

=3 A 2"y = M X A (1—k+ky)"] .
Since y™ occurs in k(1—k+ky)® only when = > m, and then with
coefficient :; km+(1—k)»-m, it follows that
(9.11.3)
B, — Icm+1{Am+(m+ )(1—k)4,,,+ (lﬂ;#‘_ﬂ(l—k)umﬁ...}.

It may be verified at once that the method is regular, and that the
relation between b, and a,, is

(9.11.4)
b, — km{a,,,+(m+ 1)(1—k)am+l+(ﬁf%‘ﬁ)(hk)zam-{-...,.

These formulae have been obtained under the hypothesis that the
radius of convergence of 3 a,x™ is 1, but we might abandon this
hypothesis and say simply that > a, is summable (y, k), to sum 4, if
B,,, defined by (9.11.3), exists for all m and tends to 4. It is, however,
more convenient for our present purpose to keep the restriction, and
the theorems which follow depend upon it.

Turorem 153. If ¥ a, is summable (y,k), and 0 <1 <k, then 3 a,
18 summable (y,l) to the same sum.
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We write
2= l—k-tky = 1—I+k, y= 1_%_,_]56,;,

flx) = E @y X" = z by = 2 Cn 2"

and denote the series ¥ a,, > b,, and X c, by 4, B, and C. If 4 is
summable (y, k) then B is convergent, and therefore summable (y, I/k).
But this means that C is convergent, i.e. that 4 is summable (y,1).

There is a theorem for the (y, k) method corresponding to Theorems
151 and 152.

TueoreM 154. If a, = o(1), and 3 a,, is summable (y,k), then it is
summable (e, c), where

(9.11.5) k

¢ = 3a=ry
to the same sum; and conversely.

The (y, k) mean, of rank n, is

B, = kit z (ﬁ)(l—k)p’nflp =h=z-mum+hAm+h’

p=n

where Uy = (f: )k”“( 1—Fk)p-=

when p > n, u, = 0 whenp <n, and m = [n/k]. After Theorem 139,
we may neglect the terms for which |A| > n¢, and write

= o[22 o[,

where c is given by (9.11.5), in the remainder. The result then follows
as in the proofs of Theorems 151 and 152.

When % increases from 0 to 1, ¢ increases from 0 to co. Hence
Theorems 153 and 154 give

TaEOREM 155. If a, = o(1) and 3 a, is summable (e,c), then it is
summable (e, c’), to the same sum, for 0 < ¢’ <ec.
This theorem will play an essential part in the proof of Theorem 156.

9.12. Further remarks on Theorems 150-5. We have supposed throughout
§§ 9.10-11 (except in Theorems 151 and 153) that ¥ a,, is a series of the class PB, but
the proofs of Theorems 152, 154, and 155, like that of Theorem 151, require only
that it should belong to Q: Theorem 150 shows that P is, for our purposes here,
a subclass of Q.

Theorems 151, 152, 154, and 155 are actually true for much wider classes of
series. We need them only as tools for the proof of Theorem 156, and it is not
necessary to consider how far they may be generalized; but what we have proved
falls far short of the ultimate truth. Thus Hyslop has proved that the B and
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(e, 3) methods are equivalent whenever a,, = O(nE) for some K, and the scope of
Theorems 152 and 154 might be extended similarly. It would follow that Theorem
155 also is true for all series of finite order.

The range of this theorem might be extended still farther by the use of different
methods. Let us consider, for convenience, the analogue of the theorem for con-
tinuous limits. We say that f(z) — I (e,¢) if

(9.12.1) fiz) = / (ﬂ%) f e~oBIaf(z1-t) dt — I,
the integral being a Lebesgue integral. Then it may be proved that

az/b
(9.12.2) Solz) = J (“;b) (f:;—:l;%;exp{—a—zﬁ):}fa(t) de
0

whenever 0 < b < a and the integral (9.12.1) is convergent for ¢ = b; and deduced
that, subject only to this last condition,

f(@)—>1(e,a)=> f(x) =1 (e, b).
This is another illustration of the principle of § 4.12.

9.13. The principal Tauberian theorem. We are now in a
position to prove our main theorem.

THEOREM 156. If > a, = A (B) and
(9.13.1) a, = O(n-3),
then Y a,, converges to A.

We begin by proving that 4,, = O(1). It follows from Theorems 150
and 151 that

(9.13.2) J (ﬂin) D e Mind, = Ato(l)
for ¢ = }. By Theorem 140

25 -
and therefore
(9.13.3) A {1+o(1)} = J (:_ﬁ) 4, e=tin

- J (:_n) > e M4, — Ay )+ A+o(1).

We may restrict the summation to || < nf. Then 4,,,,—A4,, is O(n-t|h|),
and the sum is

Ofn 3 & ¥mihl) = O(n [ esfinit] dr) = O(1).
Hence 4,{1+4o0(1)} = 0(1), i.e. 4, = O(1).
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The next (and the critical) stage of the proof depends upon ‘Vitali’s
theorem’. Suppose that D is an open and connected region of z, that
$n(2) is, for each =, an analytic function of z regular in D, that é,.(2)
is uniformly bounded in D, and that ¢,(z;) tends to a limit &(2;), for
each of a set of points 2, with at least one limit point in D. Then there
is an analytic function ¢(z) such that ¢,(z) > ¢(2) uniformly in any
closed and bounded region R contained in D.

To apply the theorem, we suppose ¢ = y-+i8 complex; choose 30 Yor 1
80 that §,> 0, 0 <y, <} <y;; define D byy, <y <y, 18] < &;

and write du(c) = J (-}%1,') Z e~Wing ..

We may suppose that [a,| < n~# for large n.
Since (as we have just proved) 4, = O(1), é.(c) is, for each n, an
analytic function of ¢ regular in D. Next,

oi=o| )3 v of ) f ) v,

uniformly for ¢ in D and all n. By Theorems 151 and 155, dulc) >4
for every c on the stretch (y,, 3) of the real axis. It follows from Vitali’s
theorem that ¢,,(c) > A4 for all ¢ of D. In particular, since ¥e > 0 and
1 are arbitrary, 3 a, = A (e, ¢) for all positive c.

Thus (9.13.2) is true for all positive c. We may restrict the summa-
tion to [k| < n¢, and then )

| a—da] < 1Y
JEN S emid, a0

<3
<%A/(£){_fe—wm'” dt +J(§cﬁ)} <ﬁ+0(1)‘1‘

It now follows from (9.13.3) that
lim|4,—4] < (em),
and therefore, since ¢ is arbitrary, that 4, > A. This completes the
proof.
It is plain that we have also proved
TaEOREM 1567. If 3 a, is summable to A by any of the (E,q), (e,c),
or (y, k) methods, and a,, = O(n-3), then 3 a,, converges to A.

for large ». Hence

t e~#In|¢| has maxima 4(n/2ec) when ¢ = -+ /(n/2c).
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9.14. Generalizations. There are generalizations of all these
theorems for extensions of Borel’s methods such as we encountered in
§4.13. There we defined summability (B, a) by

f y na-l— 1) =4

and we may define summability (B, «) by

s> A(”)m A

Thus, when « is an integer k, these assertions are equivalent to the

assertions that | o o 4 04.dagt.,

where there are k—1 zeros between a, and a,.,, are summable (B’)
and (B) respectively. We leave it to the reader to prove

THEOREM 158. If a, = o(1), then the methods (B, ), (B’, a), (e, o) are
equivalent.

THEOREM 159. Suppose that the parameters ¢, a, q, k are connected by
the relations

k 1+gq
2(1— k) 2
(the parameter q being used only when ¢ > }), and that a, = o(1). Then
the summability of > a,, by any one of the methods

(e;¢), (B,a), (B',a), (E,q), (,k)
implies its summability, to the same sum, by any of the others. Summa-
bility for a particular ¢, o, k, or q implies summability for any smaller
positive ¢, o, or k or any larger q.

It is to be expected, after §9.12 and the theorems referred to there,
that the last clause of Theorem 159, with the restriction a, = o(1),
should be far from expressing the full truth about any one of the
methods in question. Thus the implications (E,q) — (E,q’) forq¢’ > ¢
and (y, k) = (y, k') for 0 < k¥’ < k are true, after Theorems 118 and 153,
without reservation; and it can be proved that (B’,«)— (B',B8) for
0 < B < « whenever the series

¢ = }a=

a ——tﬁn
z "T'(Bn+1)
converges for all ¢.
9.15. The series. Y z*. A good deal of light is thrown on the

relations between these methods by their application to the geometric
series. We summarize the results shortly.
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(1) The (E,q) method. The series is summable inside the circle

(*+9)*+4* = (g+1)* or
r = \J(14-2¢+g%cos%0)—qcosd (—n <0 < ).
See §8.2.

(2) The (B,«) and (B’,a) methods. The success of the methods
depends upor. the formula (d) of p. 197.f The boundary of the region
of summability is the curve r = {sec(d/«)}*. The region is bounded if
a > 2 but extends to infinity if 0 < a < 2, and tends to the Mittag-
Leffler star when o — 0. When o = 2, it is the inside of the parabola
Y2 = 4(1—2).

(3) The (e, c) method. The method will succeed if

_c_ Z l_zn+he—0h'/’n - L
™ 1—2z 1—2

(where & > —n), and the question is easily settled by the aid of the
formulae for the linear transformation of the theta-functions. We find
that the region of summability is

r<el®H-z (<8< )

(4) The (y, k) method. If we are to apply this method to ¥ 27, with
[2| > 1, then we must abandon the restriction imposed on the definition
in §9.11. This invalidates the proof of Theorem 153, which ceases to be
generally true. The region of summability is defined by the two
inequalities

|(1—k)z] < 1, lkz| < |1—(1—k)z|,

and diminishes to the interior of the unit circle when % tends either to
Oor to 1.

It will be found that the relations between these various regions, near
z = 1, are closest when the parameters are connected as in Theorem 159.

9.16. Valiron’s methods. Valiron has defined and used a more
comprehensive generalization of Borel’s method. The general ‘integral-
function’ definition of §4.12 was as follows. We say that 4, — A(J ) if

(9.16.1) J()ZcA an ZCA g

where J(z) is an integral function, not a polynomial, with non-negative
coefficients c,. We now suppose that ¢, = -, where

G(n) > 0, G'(n) -0, G'(n) >0

- A,

1 Note on § 8.10.
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with considerable regularity. The typical cases are
(9.16.2) Gn)=Cnk (C>0,1<k<2)
and Q(n) = nlogn—n: in the last case the method is practically Borel’s.
We write H(n) for @"(n), so that

H(n) = Ck(k—1)n*-2, =1
in the two typical cases. Then Valiron, generalizing the arguments
applied to Borel’s method by Hardy and Littlewood, proves that,
subject to certain conditions of regularity on G(n), 4, > A(J) is
equivalent to

(9.16.3) A/ {%%‘)}Z e IWHMA > A
whenever k
(9.16.4) 4, = o[{H(n)}7];

and that this is true, in particular, whenever a, = o(1).

We shall express (9.16.3) as 4,, > 4 (V, H).- The main interest of the
method lies in the Tauberian theorem associated with it. If Sa,is
summable (V, H), and

(9.16.5) a, = O[{H(n)}¥],
then Y a, is convergent. When G(n) = CnF, then (9.16.5) is
(9.16.6) - a, = Om¥-1),

We confine ourselves here to proving, as is easy, that (9.16.3), with
H(n) = en*2 (1 < k < 2), and :
(9.16.7) a, = o(n¥*-1),

imply the convergence of the series. It will plainly be sufficient to
prove that
k-1 —derntt 4 4 0
" mgnze (Ansn—=da) >0,

where { is now a number between 1—3}% and 1; and this is
o(nk-2 Y et nt Y h|) = o(1).

NOTES ON CHAPTER IX

§§ 9.1-3. The substance of Theorems 137-9 may be found in many books,
particularly in books on the mathematical theory of probability.

§ 9.5. Hadamard’s theorem was first proved in J. de M. (4), 8 (1892), 101-86
(118), and Fabry’s generalization in AEN (3), 13 (1896), 367-99. There are
comparatively simple proofs in Landau, Ergebnisse, 76-86. Ostrowski’s theorem
was proved in BS (1921), 557-65: see also JLM S, 1 (1926), 251-63, where fuller
references are given. Mordell, JLM S, 2 (1937), 146-8, gave a particularly simple
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proof of Hadamard’s theorem; and Estermann, ibid. 7 (1932), 19-20, proved
Ostrowski’s by a modification of Mordell’s method. The proof here is due to
Zygmund, JLMS, 6 (1931), 162-3.

See also Dienes, ch. 11.

§§ 9.6-7. Hardy and Littlewood, PLMS (2), 11 (1913), 1-18. There is a direct
proof of the theorem for Euler summability corresponding to Theorem 143 in
Knopp, MZ, 18 (1923), 125-56 (136-9).

Hardy and Littlewood state Theorem 147, but give the proof in full only when
2p+1 is an integer. See also Lord, PLMS (2), 38 (1935), 24156,

§ 9.8. Hardy and Littlewood, l.c. supra, show that

3 ntedin* (4 > 0)

is summable (B) for all s if } < @ < 1, but summable only when convergent if

0 < a < }. They take A = 1, and the argument is only sketched in places.
Another example of an ordinary Dirichlet’s series summable (B) only when

convergent, though summable (C, k) for some k, all over the plane, is

1%4+0404-...—824+0404...+ 2754+ 0+4....

See Hardy, PLMS (2), 8 (1909), 277-94 (286-9).
Series of the type (iii) are considered by Hardy, QJM, 35 (1904), 22-63. Hardy
shows in particular that the convergent series ¥ a, in which

Gy = (—1)y"m~1 (n =m?), a, =0 (n # m?)

is not absolutely summable.

§ 9.9. The analogue of Theorem 149 for B summability was proved by Hardy
(l.c. supra, 37-42), and Theorem 149 itself by Knopp (l.c. under § 9.6, 150-1).
There are generalizations by Hardy and Littlewood [RP, 41 (1916), 36-53 (46-7)]
and by Knopp (l.c. 151-2).

§§ 9.10-11. The (e,¢) and (y, k) methods were introduced by Hardy and Little-
wood in their paper in the RP, and the substance of most of the theorems proved
here will be found there or in their later paper in JLMS, 18 (1943), 194-200.
Knopp considers the relations between Euler summability and summability (e, ¢),
but does not state Theorem 152 explicitly.

§ 9.12. The reference to Hyslop is to PLMS (2), 41 (1936), 243-56.

§9.13. The method is that of Hardy and Littlewood’s paper of 1943. For
Vitali’s theorem see Littlewood, 117, or Titchmarsh, Theory of functions, 168.

Theorem 156 was first proved by Hardy and Littlewood in their paper in the
RP. The condition (9.13.1) was afterwards generalized further by Valiron [RP,
42 (1917), 267-84] and R. Schmidt [Schriften d. Konigsberger gelehrten Ges. 1
(1925), 206-56]. The most general form, due to Schmidt, is

lim(4,—4y,) > 0

when m — 0, n > m, m~(n—m)—> 0: in particular this condition is satisfied if
a, > —Hnt. The proof was simplified by Vijayaraghavan, PLMS (2), 27
(1927), 316-26.

There is an alternative method of proof by means of Wiener’s ‘general
Tauberian theorems’: see Ch. XII and in particular § 12.15.

§ 9.14. The theorem referred to at the end of the section will be found in

4780 Q



226 THE METHODS OF EULER AND BOREL (2) [Chap. IX

Hardy, JLMS, 9 (1934), 153-7, and Good, PCPS, 38 (1942), 144-65. Hardy
proves the result only when 8 = }a, Good generally. Thus Hardy proves that if

ay+0+a,40+a4+04... = s (B',a)

and
tne
(a) a,(t) = z % St 1)
is convergent for all ¢, then a,+a, +a3+... = 8 (B’,a). The proof actually shows

rather more, viz. that if the series (@) converges for small ¢, and a,(t) is regular
for all positive ¢, then
j eta (t)dt = s.

This is a generalization of the (B, «) method similar to that of the B’ method
in § 8.11.

When ¢ = 1, « = 2. Thus the (B’,«) method most closely connected with the
ordinary Euler method is (B’, 2).

§ 9.15. The main result under (2) is due to Mittag-Leffler, l.c. under § 8.10.

The (e, ¢) region is determined by Hyslop, l.c. under § 9.12: he has ¢ = §.

§ 9.16. For all this see Valiron, L.c. under § 9.13. When &k = 2,

@’ (n) = H(n) = Ck(k—1) #* 0
and (9.16.6) becomes a, = O(1l). In this case the method fails to sum
1—141—... (§ 4.15).



X
MULTIPLICATION OF SERIES

10.1. Formal rules for multiplication. It will be convenient,
throughout this chapter, to use the same letter for a series and its sum,
whether the sum is a sum in the sense of ordinary convergence or not.

If the series 3 a,, = A and ¥ b, = B are absolutely convergent, then
the double series 'Y a,, b, is absolutely convergent, and has the sum
A4 B however its terms are arranged. When one at least of 4 and B is not
absolutely convergent, the convergence, or summability, of the double
series will depend upon the rule prescribed for its arrangement, differ-
ent rules giving different definitions of the ‘product’ of 4 and B. The
most familiar rule is Cauchy’s, in which the double series is summed
‘diagonally’, by associating together the terms in which m+n has a
fixed value. We then write
(10.1.1) Cp= 2 Guby=2a,b, ,=Ya,,b,7}

m+tn=p
and define the product series C as
(10.1.2) C=3c,
The rule is suggested by the formula ¥ a,,2™ ¥ b,2* = 3 ¢, 2? for the
product of two ascending power series.

Another rule is important in the theory of ‘ordinary’ Dirichlet series.
We suppose that a, = 0, by = 0, and associate together the terms in
which mn has a fixed value p, so that
(10.1.3) Cp= 2 a,b, =%’adbp,d =%)ap,dbd,

mn=p »
the summation in the last sums extending over the divisors of p. This
rule is suggested by the formula Y a,m—*3Y b,n~* =3 c,p~*; and
there are other modes of multiplication associated with Dirichlet series
S a,,e~*% of more general types.

In this chapter we shall concentrate our attention on Cauchy’s rule,
which we shall discuss very thoroughly, and dismiss the various methods
of ‘Dirichlet’ multiplication summarily. We shall also say something

about the corresponding problems for series infinite in both directions.

10.2. The classical theorems for multiplication by Cauchy’s
rule. The three classical theorems of the subject, due to Cauchy,
Mertens, and Abel respectively, are as follows.

1 Here, and often in what follows, we use the convention of § 5.4.
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TuEOREM 160. If A and B areabsolutely convergent, then C is absolutely
convergent, and C = AB.

This is a corollary of the absolute convergence of the double series
> ayb,.

THEOREM 161. If A is absolutely convergent, and B convergent, then C
18 convergent, and C = AB.

If, as usual, 4,, = ay+a,+...+a,, and similarly with other letters,
then

(10.2.1) =3 3 a,bp= 3 a,b,=3a,B,_,

g<p m+n=q m+n<p
We may write this as 3 a,,8,,,, where B, is B, ,if m < p and 0 if
m > p. Since g, ,, is uniformly bounded, and 4 is absolutely convergent,
the series Y a,,8,, , converges uniformly in p; and so

},i_f};zamﬁm = Z“mg_?;ﬂmp =B3a,=AB.

We may add that, if 4 is not absolutely convergent, then there are
convergent B for which C is divergent. For if 0, = ayB,+...+a, B,
tends to a limit whenever B, tends to a limit, then Y |a,| < H, by
Theorem 1.

THEOREM 162. If A, B, and C are all convergent then C = AB.

The power series a(r) = 3 a,2",... are absolutely convergent for
0 <z <1, and a(x)b(x) = c¢(x), by Theorem 160. Making = — 1, it
follows from Theorem 55 that AB = C.

10.3. Multiplication of summable series. There are important
generalizations of the preceding theorems for series summable (C, k).
The fundamental theorem is Cesaro’s Theorem 164: but we begin with

TrEOREM 163. If A, B, and C are all summable (C, k) for some k, then
C = AB.

In fact the proof of Theorem 162 shows that ¢ = 4 B whenever all
three series are summable (A).

THEOREM 164. If r > —1, s > —1, A is summable (C,r), and B
summable (C, s), then C is summable (C,r+s-+1), and C = AB.

We have

(1—x)r-2-2%¢(x) = (1—=z)"la(z).(1—x)-*-1b(x)
for || < 1, and therefore, in the notation of § 5.4,
> Oty = 3 ALam™ > Bian.
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Hence, equating coefficients,

(10.3.1) Cpte+l = ArBs L ATBS . +..+ALBS.
Since A~ A (m;{-r)’ B ~ B(n;l—s)’
it follows from (10.3.1) and Tileorem 41 that
r+8+1 ., p+r+s+1
% AB( r4+s+1 )

i.e. that O is summable (C,r+4s+1) to AB.
We can naturally prove (10.3.1) without using power series. Since

k p—k
4= 2 (T o Bp= S (P e

m=0 n=0

the coefficient of a,, b, in the right-hand side of (10.3.1) is

S (T TS (k)
v=m -

_ (p—m—n+r+s+ l)

- r+s41 ’

by (5.6.10); and thisis the corresponding coefficient in C7,**+1.
In particular, when r = 8 = 0, (10.3.1) becomes
C) = Ay By+A4,B,_;+...+A4, B,

It is easy to verify this directly, and to deduce, without appealing to Theorem 41
in its general form, that 4,,— 4 and B,— B imply C} ~ ABp. It follows that
C is summable (C, 1), to sum 4 B, whenever 4 and B are convergent, and so that,
if C also is convergent, its sum is necessarily 4 B. We thus obtain a simple proof
of Theorem 162 independent of the theory of power series.

We add two negative theorems showing that Theorem 164 is a best possible
theorem of its kind.

THEOREM 165. The hypotheses of Theorem 164 do not smply that C is summable
(C, k) for any k less than r+s+1.

Take p = r—3, 0 = §—§, where § is positive and small, and
Gy = (—1)™m+1), b, = (—1)"n-t+1)°.
Then 4 and B are summable (C,7) and (C, s), by Theorem 81. But
_ _ . oy Lp+D)T(0+1) . 0,
(—=1)Pcp = 3 (m+1)P(p—m+1) ‘—rmz’ ,

by Theorem 41, and so, after Theorem 46, C is not summable (C, p+0-+1), i.e.
(C,r+8+4+1—25).

THEOREM 166. The result of Theorem 164 is not true for r = —1,8 > —1.
Take
Om = (—1)™m+2)Ylog(m+2)}2, by = (—1)*n+2)*{log(n-+2)}#,
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where o > 0,8 > 0, o+ < 1. Then 4 is summable (C, —1) and B is summable
(C,8). But

?
- 1 (p—m+2y
(=0re = ,,.Zo -+ 2){loglm+ 2))* {og(p—m+ 21"

. _Mp* 1 L
~ (logp)® 2 (m 1 2)log(m L 2)s Np*(log p)t==~8,

m=0

for constant M, N, and large p. Hence ¢, # o(p®), and C is not summable (C, 5).

Our next theorem is a generalization of Mertens’s Theorem 161, to
which it reduces for » = 0.

THEOREM 167. If r > 0, A isabsolutely convergent, and B is summable
(C,7), then C is summable (C,r).

Here a(x){(1—z)"-1b(z)} = (1—2x)~"1¢(x), and so
C.;’ = ao B;—l—a/l B;,__l—l" ven +ap BS.
We may write this as

A
(p“) o

r

where = (p +r) - Br

mp =\, p—m
for m < p and B,,,, = 0 for m > p. Since, for m < p,
sl < (F7 ) Byl
Bm,p is uniformly bounded, so that 3 a,,B,,, converges uniformly in p.

Also (P"ZH’T) ~ (pjr), for each m, when p - o0, and so

> nBuyp—> 2 aplimBy, = BT a, = AB.

THEOREM 168. The result of Theorem 167 is not true when r < 0.
Take a,, = (— 1)™a,,, b, == (—1)"B,, where a,, and 8,, are positive and ¥ a,, < co.

Then

lep] = X otmPBpom > apfo (0 > 0),
and ¢, = o(p’) involves o, = o(p"), which is not, for any negative r, a consequence
of the convergence of 3. .

10.4. Another theorem concerning convergence. We now
consider a group of theorems of which the simplest is
. THEOREM 169. I f A and B are convergent and
(10.4.1) a,, = O(m1), b, = O(n™1),
then C is convergent (and C = AB).
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In fact 4 and B are both summable (C, —1-8), for any positive 8,
by Theorem 45; and therefore, by Theorem 164, C is summable
(C, —1+-23), and a fortiori convergent.

TaeoreM 170. If A and B are convergent; 7(x) and {(x) are positive
and tend to infinity with z; n(x)+{(x) = z; and
2 . x
(10.4.2) > la, = 0(1), > |bsl = O(1);
7(x) i)

then C is convergent (and C = AB).t

We suppose that 0 <y < 5, 0 <z < {, and divide the triangle 7
of the (m,n)-plane in which m+n < z into regions T}, Ty, Ty, Ty, T
as shown in Fig. 2. We may suppose z, 7, {, y, and z non-integral,

n
ml=y
T, T, m-tn=z
¢
Ty
T n=z
T,
0 m

Fia. 2.

80 that there are no lattice points on the lines dividing the regions.
If A(z),... are the sum-functions of A4,..., and Z,,... are the sums
> > a,b, over T,..., then

C(x) = B+ Zy+ Ig+ 4+ Z;.
Also %= 3 dn 3 by = A()BQ) > 4B.

m<n a<

T If 5 or { does not tend to infinity, then one or other series is absolutely convergent,
and the theorem is included in Theorem 161. )
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It is therefore sufficient to prove that X,+ X; - 0 and Z,+ Z; - 0,
when y and z are chosen appropriately.
We choose z so that

| S ba| <€ (g >y >2).
n=v;
Then

r—2z r—m
1%l = [ anz b < 3o <3 lan| < Ke,

for a constant K, by (10.4.2). An
Z z—n 2 T—n
1Za0 =35 2 a,,.} < 3 Ibu] zamlw

when z is fixed and z and 7 tend to infinity. Hence Zz-{—Zs - 0; and
we can prove that 3,4+ . — 0 similarly.

When the conditions of Theorem 169 are satisfied, we can take
n = { = 4=, since

1
3 i =0( > )=o)
xsm<z z<m<z

There are other interesting special cases.

TeEOREM 171. If A and B are convergent,

1
= —8 =
(10.4.3) Gy = O(m=?) (8>0), b,= o(nlogn),

then C 18 convergent.
We may plainly suppose § < 1. We take 7 = x—a® { = 2%. Then

3 |am| = (2.2 = 0(1),
> )

x z 1
% [ba] = 0( Z mgg_n) = O(loglog x—loglog z®) = O(1).

10.5. Further applications of Theorem 170. (1) Theorem 170 enables us to
prove a ‘one-sided’ extension of Theorem 169,

TrEOREM 172. Ifa,, and b, are real, A and B are convergent, and a,, > —Km™1,
b, > — Ln1, with constant K and L, then C is convergent.

If ot and a,; are the positive and negative a,,, and
Afz) =m§¢am, A*(z) =m§za'-"'- »  A(x) =m§za; ,
then' A(z) = A+(x)—i—A—(x),
mZzlaml = AHx)—A4A~(x) = A(x)—24(x),

|am| = A(x)—A(3z)—2{4~(z)—4~(}=)}-

{z<m<c
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But 4A(z) = O(1) and

A~@)-A~(Qr)= I az>—K I m,
e<m<e e<m<az

which is bounded, so that a,, satisfies (10.4.2). The same argument applies to b,
and the theorem follows.
(2) Another application is to the proof of

THEOREM 173. If A and B are convergent,p > 1,q > 1, and 3 m?|a,,|? < oo,
3 n%-1b,|? < oo, then C is convergent.

For if p’ = p/(p—1), and all the summations are over (}z, ), then, by Hélder’s
inequality,

S |an| = 3 mli¥|a,].m Y < (3 mP1a,|P)U? (3 m~ NP = O(1);

and similarly ¥ |6,] = O(1).

10.6. Alternating series. In this section we prove a more
elementary theorem concerning series of the familiar alternating type.

THEOREM 174. If A = Y (—1)",, B =3 (—1)"B,, where «,, and
B, are positive and decrease steadily to 0, then, in order that C should be
convergent,

(i) 4t 18 necessary and sufficient that
(10.6.1) Yo = %Bp+1Bp_yt . tay B> 0;

(ii) it 28 necessary and sufficient that
(10.6.2) (dptogt.ta)Bp >0,  (Bot-Byt-..+Bpay, = 0;

(iii) it 15 sufficient that 3 o, B, < 00;

(iv) 1t is necessary that 3 (o, B,)1*® < co for every positive 3.

(i) If we write

4 = A4, +(—1)™p,,  B=B,+(—1),
then 0 < p,, < o, 0 < 0, < B,. Also
¢,=%a,B, , = BA,+(—1)*Y «,6,_, = BA,+R,

where |R,| < 3 a,B8,-,» = y,- Hence (10.6.1) is sufficient, and it is
obvious that it is necessary.

(ii) Next,

Yo = (a0+"'+ap)ﬁp’ Yo = (ﬁ0+"'+ﬁp)ap’
so that the conditions (10.6.2) are necessary; and
Yo < (“o+---+°‘q)ﬁq+(ﬁo+---+ﬁq)°‘q’

where ¢ = [4p], so that they are also sufficient.

(fii) If 0 < ¢ < p then

ap(/30+ﬂl+"'+ﬁp) < %(ﬂo'*‘---+Bq)+°‘q+13q+1+-~-"‘%ﬁp =8 +8,,
say. If 3 a,B, < o0, we can choose g so thatS, < e forall p > ¢; and
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8,0 when ¢ is fixed and p —>oco. Hence a,(By+...+B,) >0, and
similarly B,(«+...+a,) - 0. Thus the condition is sufficient. That it
is not necessary is shown by the example in which «, = 8, = (nlogn)-t
for » > 2: in this case y,, — 0, so that C is convergent.
(iv) Finally, (otoy+.o.-ap)Bp = pay By
If C is convergent, then the left-hand side tends to 0, by (ii), and so
oy B, = o(p~t). Hence Y (a,B,)'*® < 0. The example
Oy = ﬁn = (n+l)-}

shows that the condition is not sufficient.

10.7. Formal multiplication. We have assumed in all of the
preceding theorems that both 4 and B are convergent or summable.
There is another type of theorem, particularly important in the theory
of trigonometrical series, in which one series, say 4, is almost arbitrary,
while the other is severely restricted. The conclusion is then that C,
behaves ‘very much like’ B4,

If
(10.7.1) C,—BA, >0

when p — o0, then we shall say that C is equi-convergent with B(A).

In this case, if 4 is convergent or summable, then so is C (with sum
AB).

TaeorEM 175. If a,, = o(1), X nlb,| < 00, then C is equi-convergent
with B(A).

We use as a lemma
TaeOREM 176. If a, = o(1), > |p,| < 0, then

Gp == ao pp+a1 pp._1+ ...+ap Po = 0(1).
This is trivial; for we can choose P so that

lan| <e (m=}P), % lpnl <
n=>{P

2, in
lopl < Max [a,| 3 |p,|+ Max |a,| 3 |p,] < e(Max|a,|+ 3 |p,l)
m<ip i ip<m<p 0 v

for p > P.
To deduce Theorem 175, we write B = B, +8,, so that
Oy = ayB,+a, By_1+...4a, By = BA,—ayf,—...—a, By,
where

Bo=Zbw  IBI<T bl ZIBIST 3 lbal = Snib,l

p n>p
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Then, after Theorem 176,

aoBp+a,Bpa+-..+a, By > 0, C,—B4, 0.
It is plain that if @, and b, are functions of a variable z, a,, — 0
uniformly, and 3 n|b,| is uniformly convergent, then C,—BA, -0
uniformly.

There are generalizations of Theorem 175 for (C, k) summability, a little more
complex in form. We leave it to the reader to prove

TaEoREM 177. If a, = o(m), I n¥b,| < o, then
C},— BAL+ B*4, = o(p),
where B* = 3 nb,. If also A,, = o(m), and in particular if a, = o(l), then
C}— BA}, = o(p), i.e. C and B(A) are equi-summable (C, 1).

10.8. Multiplication of integrals. We now state the theorems for
integrals which correspond to the more important of Theorems 160-70.
The proofs follow the same lines and we do not give details, noting
only the points where there are material differences. These arise from
the absence of any ‘limitation theorem’ corresponding to Theorem 46.
In particular, the convergence of 4 = f a(z) dx does not imply the
convergence of [ e-82|a(x)| de for positive 5.

We define C by C = f ¢(z) dx, where

(10.8.1) () = f a(t)b(z—t) dt = f a(x—1)b(t) dt

(with the convention of § 5.6 concerning limits).

THEOREM 178. If A and B are absolutely convergent then C is absolutely
convergent, and C = AB.

THEOREM 179. If A is absolutely convergent and B is convergent, then
C s convergent, and C = AB.

THEOREM 180. If all three integrals are convergent, then C = AB.

TuEOREM 181. If r > —1, s > —1, A is summable (C,r), and B
summable (C, s), then C is summable (C,r+s4+1), and C = AB.

THEOREM 182. Ifr > 0, A is absolutely convergent, and B is summable
(C,r), then C is summable (C,r), and C = AB.

THEOREM 183. If A and B are convergent, y and { satisfy the conditions
of Theorem 170, and

(10.8.2) fla(t)l dt = 0(1), f}b(t)[ dt = 0(1),
n

then C is convergent, and C = AB.
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We need only add the following remarks.
(i) We must deduce Theorem 180 from Theorem 181 with r = ¢ = 0, and not

attempt to imitate the argument of § 10.2.

(ii) The proof of Theorem 181 depends on the identity
(10.8.3) Crisa(@) = [ A,(0)By(z—2) dt,
where, for example,

A, (x) = f (z—tYa(t) dt;

and that of Theorem 182 on
(10.8.4) Cz) = j a(t)B(x—t) dt.
To prove (10.8.3) we observe that

z ] i z—t
S S )y —t—p)
fA,(t)B,(x-—t) dt = I‘(r+l)I‘(3+1)fdtfa(u)(t u) du f bv)(x—t—v) dv.

0 0 0 [
Here 0 cu<t<z 0<v<<o—t <. When v and v are fixed, ¢ runs from
u to z—v: when u is fixed, v runs from 0 to x—w«. Hence the triple integral is

1 & z—u z—v
e | a(u) du | b(v)dv | (t—u)(z—t—v)*di
T+ 1)r(s+1)of of uf

1 z T4
= rtet2) J. a(u) du | (x—u—v)+s+ib(v) dv
0

a(u) du | (x—w)tetip(w—u) dw

e ot

1 z
= I‘(r+s+2)f
(1]

l x w
= TrTat2) f (x—w)r+s+t dw f a(u)b(w—u) du = C,4,4(x).
0 0

Whenr > 0,s > 0, the argument is valid, by Fubini’s theorem, for all integrable
a(z) and b(z). If a(x) and b(z) are bounded in every finite interval (0, X), it is
valid for » > —1, 8 > —1: in other cases some reservations are needed.f

The proof of (10.8.4) is similar but a little simpler.

10.9. Euler summability. We must now consider the problem of
multiplication for series summable by Euler’s and Borel’s methods.
We recall the definition of summability (E,q): if, for small z and v,

f@) = 3 a,am+ — Z @ ( Yy )"*l — 3 a@{(g+1)y)mH
n n l_qy m ]
and Y a{® = 4, then ¥ a, is summable (E,q) to sum 4. We have to
add a further definition: if ) a{? is summable (C, k), then we say that
> a, is summable (E,g; C, k).
1 Compare the note on §§ 5.14-15.
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THEOREM 184. If > a, = A (E,q), > b, = B (E,q), then
Yc,=AB (E,q; C,1).
Yo =Sy, g = Sa e
h(z) = 3, g+ 1)P+yP+, ‘
then the series are absolutely convergent for small z and y, and
J(@)g(x) = xh(z). Hence
S dPg+1py? = (@+1)(1—gy) 3 aP(g+1)my™ 3 b2+ 1)y,
(10.9.1) 3 PY? = (g+1) Y al@Y™ > bi@Y"*—qY I al@Y™ > @Y=,
where ¥ = (¢+1)y. It follows that
e = (g+ N 2 a@PbP—q 3 laiz’bﬁ” = (q+1)G,—9G,

+n=p m+n=p—
say (with G_; = 0). Since Y a® = 4, > @ = B, it follows from
Theorem 164 that 3 G, = 4B (C, 1), and from Theorem 47 that
3 Gyy = 0+Gyt... = AB (C, 1).
Hence 2@ = (¢g+1—q)AB = AB (C,1).

It is plain that, if we use Mertens’s theorem instead of Cesaro’s, we
obtain

TarEorEM 185. If ¥ a,, = A (|E,q|), i.e.if D ol converges absolutely
to A, and 3 b, = B (E,q), then 3 ¢, = AB (E,q).

On the other hand, if we suppose A, B, C all summable (E,q), and
make ¥ — 1 in (10.9.1), we obtain C = 3 ¢{® = A B, and so

THEOREM 186. If A, B, C are all summable (E,q), then C = AB.

10.10. Borel summability. The facts concerning Borel summa-
bility are a little more complex, since there are two definitions, and
since the series @y+a,+... and a,+a,+... need not behave similarly.
We state our results in terms of the integral definition, leaving the
variants for the exponential definition to the reader.

If Borel’s integral is summable (C, k), in the sense of §5.14, we say
that Y a, is summable (B’; C,k). We begin by proving that

(10.10.1) agta,+agt... = A (B'; C,k)
implies
(10.10.2) ay+a,+ag+... = A—a, (B'; C,k+1).
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In fact, if a(t) = Z n oy " then

(10.10.3)

fli) o= -3 "o
0

= —ay+ f (1-—~) e~%a(u) du+ j (1-——) e~va(u) du.

Also (10.10.1) implies
ayta,+a,+... = A (B’; C,k+1).
Hence the second term on the right of (10.10.3) tends to A, while the

last term is O(t1); and (10.10.2) follows.
We can now prove

THEOREM 187. If Y a, and > b, are summable (B') to A and B, then

(10.10.4) 0+cot+cy+cat... = AB (B'; C,1)
and
(10.10.5) ¢o+cy+cet... = AB (B’; C,2).

By Theorem 181, with r = ¢ = 0,

-

-z _ -t e~ THh(x— — .
!e dx! a(t)b(z—t) dt — fdx“ea(t)e b t)dt} AB(C,1)

The inner integral on the left is

j m(x—t)" dt = z z (m+n-|—1)' gmAn+l — z ;_,:ll)'

Hence f -xz p(x:rll)'dx = AB (C,1),

whieh is (10.10.4); and (10.10.5) is now a corollary.
It is plain that, using Theorems 179 and 180, respectively, instead of
Theorem 181, we can prove the following two theorems.

THEOREM 188. If (in addition to the hypotheses of Theorem 187)
J' e~*tla(t)| dt < oo (i.e. if A is absolutely summable), then
0+4cytc4-... = AB (B'), Cot+e+c+... = AB (B’; C,1).
THEOREM 189. If > a,, > b,, and 3 c, are all summable (B’), then
C = A4B.
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10.11. Dirichlet multiplication. Suppose that Ay >0, u, >0,
and that the sequences (,) and (,) increase strictly to co; that (v,)
is the sequence (A,,+,) arranged in ascending order, equal sums A, +p,,
being regarded as giving one v,,; and that

¢y '—A..+§,=u,am b,.

Then we call ¢ = 3 ¢, the general Dirichlet product of 4 and B. If
A, = m, p, = n, then the rule reduces to Cauchy’s; if A, = logm,
By = logn, to the rule defined by (10.1.3), which has many applications
in the theory of numbers. The general theory of Dirichlet multiplica-
tion demands a detailed study of Riesz’s ‘typical means’ defined in
§ 4.16. We confine ourselves here to the generalization of Mertens’s
theorem.

TureoreM 190. If A4 is absolutely convergent and B convergent, then the
general Dirichlet product C of A and B is convergent, and C = AB.

For
Co= 2 c,= a,b, = a b, = a,, By,
ol péPp A..+§..<vp e z\.gg—m mp..svg—l.. " :\..<-§—.u. moN
where N = N(m, p) is the largest n for which p, < vp—A,; i.e.

(10.11.1) Cp = 3 @nPmp

where Buop= 2 bun A<vp) 0 (Ap > vp).
PaS<VP—Am

Then B, p is uniformly bounded, (10.11.1) uniformly convergent, and
Cp—~> > a,limB, .= B> a,=AB.

10.12. Series infinite in both directions. We end this chapter
with a short discussion of the multiplication problem for series infinite
in both directions. The problem is a good deal more difficult than the
problem for ordinary series, since the general term of the product series
is usually itself an infinite series. We shall have to consider two different
definitions of the sum of a series over (—o0, o), and two different rules
- for multiplication. We shall find it convenient to vary our conventions
concerning sums written without limits. A sum > a, without limits will
run over all integral n, and we shall write >+ @, and ¥ - a,, for sums over
positive and negative n, so that

Sa,=ay+ dta,+ S-a,
when the series are convergent.
If

10.12.1 Ay = a A
( ) N —N’gl<N "
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when N and N’ tend to oo independently, then we shall say that 4 is
unrestrictedly convergent. In this case the series >+a, and X~ a,
converge separately, and a,, > 0 when |n| — co.

If
when N -> o0, we shall say that A is restrictedly convergent. In this
case X+ (a,+a_,) is convergent, and a,,+a_, - 0; but there is no limita-
tion on the order of a,, and a_, separately.

We define the product of two series A and B in one or other of two
ways.

(1) Laurent multiplication. The formal product of two Laurent series

A@z) =3 a,z™, B) = > b, 2",
arranged in powers of z, is
C(x) = 3 c,a?,

where
(10.12.3) o= Gpb,=20a,b, n=7230a,,b,.7

m+n=p
The rule for Laurent multiplication of 4 and B is obtained by putting
z = 1, s0 that Cis Y c,,.

(2) Fourier multiplication. There is another rule which is particularly
adapted for restrictedly convergent series (and which we shall use only
for such series). If we write

A) =Y a,cosmb = }oy+ >+ o, cO8MO,

10.12.4

( ) B(f) = X b,cosnf = 4By+ >+ B, cosnd,
where

(10.12.5) Sy = Ut Gy B = butb_,

(so that ag = 2a,, By = 2b,, and o, and B, are even), multiply 4(f) and
B(6) formally, and use the addition formulae for cosines, we obtain

(10.12.6) C(0) = Y ¢, co8pb = Jy,+ 3+ v, cospb,
where cp=13% 2 a,b,}
min=p
(10.12.7)
Yo = 260 = mizn__:oa’m bn: Yo = cp+c——p = %mirgp=oambn (p > 0)'

Thus y, is the sum of the products a,,b, on the two lines m+n = 0,

+ These are sums over (—a0, ©0): we do not use the convention of § 5.4 here.
t It would be equally natural to define ¢, with m+n = —p, but we shall always
asgociate c,, with c_,,. ’
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and y,, for p > 0, is half the sum of the products on the four lines

m+ntp = 0, the points of intersection of these lines being in either
case counted twice.

The rule for Fourier multiplication is obtained by putting 8 = 0 in
A(6), B(6), and C(f). Thus

(10.12.8) A =}ag+ S*ta,, B=1Bt+3*Bn C = byt 3t vps

where
(10.12.9)

yp = %NOBP-I-% z+ am(ﬁm—p+ﬁm+p) = %Bo ap+‘} 2+ ﬁn(an—p+an+y)’

and in particular

(10.12.10) ‘ Yo = Y Bot+ 2+ P

Our work so far is formal. Whichever definition we adopt, c,, or y,,
is defined by infinite series which need not converge. For example, if

ay = by = 0, Uy = by, = (=1)"m|F (m #£0),
then the definition (10.12.3) gives

¢p = (—1)P 3’ |m[ 7} p—m|~}
(where the dash implies omission of the terms m = 0 and m = p), and
the series diverges for every p.

10.13. The analogues of Cauchy’s and Mertens’s theorems.
It is plain that Cauchy’s theorem for two absolutely convergent series
stands unchanged, for either rule of multiplication, and we need only
consider the analogue of Mertens’s theorem. Here we must distinguish
between the two rules.

TrEOREM 191. If A is absolutely, and B unrestrictedly, convergent, then
the Laurent product C is unrestrictedly convergent, and C = AB.

It is plain first, since A4 is absolutely convergent and b, bounded, that
the series for every c,, is (absolutely) convergent. Also

P P
C = c, = a,b
PE p=2-—P' » p=z—P' m+n2=p men

[

P—m
= z A ; bn = z amﬁm,P,P"
m=—o n=—P-m

say. Since B, p p is uniformly bounded, this series is uniformly con-
vergent, and
OP,P' —-> z amlimﬁm’P,P/ =B Z a,, = AB.

4780 R



242 MULTIPLICATION OF SERIES [Chap. X

The theorem becomes false if ‘unrestrictedly’ is replaced by ‘restrictedly’ in
hypothesis and conclusion: the hypotheses do not then involve even the existence
of ¢,. Thus, if

Gp=0(m<g0), a,=m2(m>0), b,=0, b,= —b_, = 2% (n>0),
then A converges absolutely to }n? and B converges restrictedly to 0, but
€= —2tn22" = —oo,
The corresponding theorem for restrictedly convergent series is
THEOREM 192. If A is absolutely convergent and B restrictedly con-
vergent, then the Fourier product C of A and B is convergent, and C = AB.
In this case

(10131)  Cp= _ﬁ;cp = byt gpyp =}3 3 tub

where D is the infinite cross defined by |m-4-n| < P, and products

corresponding to points of the square |m|+4-|n| < P are counted twice.
Now, if

Uy = foy, VU, = %ﬁn’ U= 2 Um> V= 2 Uns
then U is absolutely and ¥V unrestrictedly convergent, so that, by
Theorem 191, their Laurent product W = 3 w, is (unrestrictedly) con-
vergent, and W = UV. Also

P
(10.13.2) Wp = ;wp = Uy Uy = ilmé,gg?(am‘l'a—m)(bn'*'b—n)y

Imgn <P
and a moment’s consideration shows that Cp = Wp. Hence

Cp-> UV = AB.

10.14. Further theorems. There is a theorem for Laurent multi-
plication corresponding to Theorem 175, viz.

TueoREM 193. If a, = o(1) when |n| > oo, and Y [nb,| < o, then
Cpp—BApp —> 0. In particular, if A is unrestrictedly (restrictedly)
convergent, then C converges unrestrictedly (restrictedly) to A B,

and a similar theorem for Fourier multiplication of restrictedly con-
vergent series, which we leave to the reader.

The analogue of Theorem 169 requires more careful consideration.
The most satisfactory statement is in terms of Fourier multiplication.

THEOREM 194. If o, = O(|m|™Y), B, = O(|n|™2), and A and B are
restrictedly convergent, then the Fourier product of A and B converges to
AB.
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First, after (10.12.9), y,, is the sum of two series of the type

z O(lm|1+1 Im—;l+1)'

These are absolutely convergent, and their sums tend to 0 when p -> co.
Next, after (10.13.1) and (10.13.2),

Cr=1 33 onby=HDOATAT),
where 7}, T, T, extend over the ranges D,, D,, D, defined by
im|+|n| < P; |m+n| < P,m—n>P;, mitn <P, m—n<—P
respectively. Now 37, = 21;; 0ty Brs
1

where Djt is the positive quarter of D, ; terms on the axes are multiplied

by 3, and oyB, by }. This sum is the partial sum of the Cauchy pro-

duct of }oy+ >+ a,, and 3By+ >+ pB,, and hence, by Theorem 169,

17, - AB. 1t is therefore sufficient to prove that 7}, and 7} tend to 0.
We take 7,. We have

T m—P-1 ) P-m B
—,,.2 ; ,,=_% T s P

0 m+P V

mz-lm n= zm+lﬁ +'m=§1:-"+1amn g PBn 2

say. First
P
V, = ( z z + z ) Z B = VO L Y@L VE,
Here 0 <8 < } and 7 is large enough to make
| gﬁnl <

for m, > ny > 3; we also suppose that 8P and 7 are not integers and
that 3P << P—=. Then
P

o — 0(2 LI S ) o(zl 2‘) ~ 0)
X =P-m+1 ntl =1 P
niformly in P; V@ 57t 1
umiormiy in £7; = (BP W—%—ﬁ) = (Clogg)

uniformly in P; and

1
Ve = = o1},
25 =)
We can make V{) and V{® as small as we please by choice of 8, {, and 7,
and V{ -> 0 when §, {, and 7 are fixed. Hence ¥} -» 0.
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The discussion of ¥} is similar. We write
Pty AP  ® m+P

= (3 43 +3)om S = VEOVRLTY,
m=P+1 P+y n=m—P
where A > 2. Here

> 1 E 1 1

e dgen 3 - 58 - )

; m-+ ln___%:_Pn—{—l ; m2 A
uniformly in P; and V{ and V® may be treated like V{¥ and V{¥
respectively. Hence ¥, - 0;

and this completes the proof.

It is plain after § 10.12 that there is a corresponding theorem for Laurent
products, viz.: if @, = O(|m[™), b, = O(|n|™), and A and B are unrestrictedly
convergent, then the Laurent product C of A and B converges restrictedly to AB.
This assertion becomes false if either ‘unrestrictedly’ or ‘restrictedly’ stands in
both hypotheses and conclusion. If

ay = (m+2)%Ylog(m+2)}, by = (2—n)~log(2—n)}>,
wherec > 0,0 < p < },m > 0,n < 0, and a,, and b, are 0 whenm < 0,n > 0,
then the hypotheses are satisfied with ‘unrestrictedly’, but [Cpe| > H(log P)'~?,
so that C is not unrestrictedly convergent. If ¢, = b, = 0, a,, = b,, = m™! for
m # 0, then the hypotheses are satisfied with ‘restrictedly’, and 4 = B = 0;
but ¢, = —}n?and ¢, = c_, = —2/p*for p # 0, so that C converges (absolutely)
to —7? #% AB.

There is also a theorem corresponding to Theorem 173, viz.

TrEOREM 195. If A and B are restrictedly convergent,

p>1, g>1, > |m|PYanl? < o, > |[n]|2by|? < o,
then the Fourier product C converges to AB.

We leave the proof to the reader.

10.15. The analogue of Abel’s theorem. It is natural to ask
whether there is an analogue of Abel’s Theorem 162, i.e.
(1) whether the unrestricted convergence of 4, B, and their Laurent
product C necessarily imply C = 4 B;t
(2) whether the restricted convergence of 4 and B, and the con-
vergence of their Fourier product C implies C = AB.
Miss S. M. Edmonds, however, has constructed an example which
shows that the answer to both questions is negative.} In this

a, = misinmvm (m >0), @,=0 (m<0), b, =a_,

t+ The second example of § 10.14 shows that, when 4 and B are only restrictedly
convergent, their Laurent product C may converge, even absolutely, to a sum different
from AB.

1 Miss Edmonds considers only Laurent products, but the assertion about Fourier
products is a simple corollary.
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so that 4 = B = 3+ m-tsinwvm; the Laurent product converges to
A%+2 and the Fourier product to 42-1.

There is no very simple analogue of Cesaro’s theorem, even when
r=8=0.

NOTES ON CHAPTER X

§ 10.2. Theorem 160 was first stated explicitly and proved satisfactorily by
Cauchy, l.c. under § 1.1, 147.

Theorem 161 was proved by Mertens, JM, 79 (1875), 182-4. The negative
remark which follows the proof is due to Schur (l.c. under § 3.2). I have stated
the proof in a way suggested to me by Miss S. M. Edmonds, and arranged the
proofs of Theorems 167, 190, and 191 on similar lines.

Theorem 162 is contained in Abel’s memoir on the binomial theorem, JM, 1
(1826), 311-39 (317-18) [Buvres (1), ed. 2 (1881), 219-50 (226)].

§ 10.3. Cesaro, BSM (2), 14 (1890), 11420, proved Theorem 164 for integral
r and s. The extension was made independently by Knopp and Chapman (l.c.
under § 5.5.).

Theorem 167 was proved, for integral 7, by Hardy and Littlewood, PLMS (2)
11 (1912), 411-78 (Theorem 35), and for general r by Hardy and Riesz, 65 (where
it is extended to Dirichlet multiplication). The theorem for integral 7 is included
in a more general theorem published a little before by Fekete, MTE, 29 (1911),
719-26, to the effect that if » and s are integers, 4 is absolutely summable (C, r)
and B summable (C,s), then C is summable (C,74s). This in its turn was
extended to general r and s by Kogbetliantz, BSM (2), 49 (1925), 234-56: see
also Winn, PEMS (2), 3 (1933), 173-8. For the notion of absolute summability
see the note on §§ 6.5-6.

§ 10.4. Theorem 169 was first proved by Hardy, PLMS (2), 6 (1908), 410-23,
and has since been generalized, and the proof simplified, by a number of writers.

Theorem 170 is due to Neder, ibid., 23 (1923), 172-84 (except that Neder has
1 = { = 3x). The proof here follows Hardy, PCPS, 40 (1944), 251-2. Inter-
mediate theorems, and generalizations in various directions, will be found in

Hardy, PLMS (2), 10 (1912), 396-405, and JLMS, 2 (1927), 169-71;

Rosenblatt, B4 P (1913), 603-31, and DMV, 23 (1914), 80—4; Landau, DMV,

29 (1920), 238;

Broderick, PLMS (2), 19 (1921), 57-74, and 22 (1923), 468-82.

Some of the generalizations in these papers concern Dirichlet multiplication
(§ 10.11).

In the first of his two papers Rosenblatt proves that if » > 0, s > 0, 4 is

summable (C,7) and B summable (C, s), and

Ar-1 = O(m™1), B:~1 = O(n*-1),

then C is summable (C,7+4s). This result reduces to that of Theorem 169 when
7 = 8 = 0 and we interpret 41 and B;1as a,, and b,. But this (as is suggested
by the proof of Theorem 169 in the text) is not the best result. For A, being
bounded (C,r—1) and summable (C,r), is summable (C,7—1+38), by Theorem
70; and similarly B is summable (C,s—1-§). Hence, by Theorem 164, C is
summable (C,7+s—1-+23), i.e. by all means of order greater than r+s—1.

Hardy and Littlewood, lL.c. under § 10.3 (464-6), show that if « and B are any
numbers less than 1, there are convergent series 4 and B, with a,, =~ O(m—«),
b, = O(n—#), whose product is divergent.
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§ 10.5. Theorem 173 (with the generalization to Dirichlet multiplication) is
proved by Hardy and Littlewood, MM, 43 (1914), 13447 (137).

§ 10.6. Pringsheim, M4, 21 (1883), 327-78 (360-71). The proof here, which
is simpler than Pringsheim’s, was given by Hardy in the first paper quoted under
§ 10.4. See also Bromwich, 94-5.

§10.7. Theorems of this kind were first considered by Rajchmann, Comptes
rendus Soc. Sc. de Varsovie, 11 (1918), 115-52: see Zygmund, MZ, 24 (1926),
47-104 (especially 48-65). We have sharpened the conditions. Rajchmann and
Zygmund consider series infinite in both directions: see § 10.14.

§10.8. Bohr, Oversigt over det Kongelige Danske Videnskabernes Selskabs
Forhandlinger (1908), 213-32, proved Theorems 178, 179, and 180, and the case
# =8 = 0 of Theorem 181. Chapman, l.c. under § 5.5, proved Theorem 181
generally. )

§10.9. Knopp, MZ, 18 (1923), 125-56 (130-1), proves a theorem which, when
combined with his theorems of § 8.3, gives the substance of the theorems here.

§10.10. Borel, 131-5, proves that the product of two series absolutely sum-
mable in his sense (i.e. regularly summable in the sense of § 8.6) is absolutely
summable. Hardy, QJM, 35 (1903), 22-66, proves Theorem 189 and a part of
Theorem 188, viz. that C is summable if 4 is absolutely summable in Borel’s sense.

Theorem 187 is due in substance to Doetsch, Dissertation, Gottingen, 1920.
Doetsch works in terms of the exponential definition, saying that 4 is summable
(B, k) if e*A(x) — A (C, k), and proves

S a, = A (B,r).3 b, = B(B,s) >3 c, = AB(B,r+s+1).

In particular the summability (B) of 4 and B implies the summability (B, 1) of
C. It is easy to prove that the assertions

ap+a,+... = 4 (B, 1), a;+as+... = A—a, (B’; C,1)
are equivalent, and to deduce that Theorem 187 is equivalent to the case
r = 8 == 0 of Doetsch’s theorem.

Sannia, RP, 42 (1917), 303-22, generalizes the definitions differently, but his
conclusions concerning multiplication are incorrect.

§10.11. Theorem 190 is due to Stieltjes, N4 (3), 6 (1887), 210-15. Many
examples of the use of the theorem will be found in Landau, Handbuch, 673 et seq.,
and in Ramanujan, TCPS, 22 (1918), 259-76 (Collected papers, no. 21).

For fuller information concerning Dirichlet multiplication see Hardy and Riesz,
ch. 8; Landau, RP, 24 (1907), 81-160, and Handbuch, 750-67; and the papers
quoted in the note on § 10.4.

A particularly striking theorem is that when },, = logm, ., = logn, v, = logp,
the convergence of 4 and B implies that of ¥ p~ic,. This was stated without
proof by Stieltjes, and proved by Landau, l.c. supra. Landau, RP, 26 (1908),
169-302 (265-6), proved that 3, p~Fc, is not necessarily convergent for all positive
s, and Bohr, WS, 119 (1910), 1391-7, that the index } cannot be replaced by any
smaller number.

§§ 10.12-13. The problem was considered first by Chapman, @JM, 44 (1913),
219-33 (for Laurent multiplication). He proves Theorem 191.

§ 10.14. The first theorems of the type of Theorem 193 were those of Rajchmann
and Zygmund: see the note on § 10.7. The other theorems of this section are
referred to by S. M. Edmonds, l.c. #nfra, but have not been published before.

§ 10.15. S. M. Edmonds, JLMS, 17 (1942), 65-70.



XI
HAUSDORFF MEANS

11.1. The transformation 8. In this chapter we shall be concerned
with a class of transformations which includes a number of those studied
in earlier chapters, and in particular those of Cesaro, Holder, and Euler.
The theory depends upon the properties of the special transformation

-5 o]

(11.1.1) ty = Amgg ;’( (7)o
We shall denote this transformation by
(11.1.2) t = ds,
and the matrix

1 0 o

1 —1 0
(11.1.3) 1 o 1

associated with it by |5].
THEOREM 196. 8 is its own reciprocal : if ¢t = 8s, then s = 8.

Thus 88 = I, where I is the identity ¢, = s,,.
For, if ¢,, is defined by (11.1.1), then

Amto‘—z( o (7)o Z(—l)n( )2(—1?(:)%
S S-Sk S

PGy
e () -)2) 0rnem

and the inner sum in the last line is 1 if p = m and 0 otherwise.t
It follows from the formulae of § 1.3 (4)} that if

T = ""—y" Y= _._2_?_5:’ 8(x) = 2 Sp X, Hz) = ztnwn’

then (1—z)s(x) = i(y).

t Symbolically, #, = (1—E)®s,, AMt, = {l—(1—E)}Ms, = E™s, = sy,
1 Changing the sign of z and replacing a, and b, by (—1)#s, and ¢,.
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Theorem 196 shows that this implies (1—z)t(z) = 8(y), as may be veri-
fied directly. We have also seen in §9.6 that if

S@ =357 Tw=3AT

then e-*8(x) = T'(—z), and Theorem 196 shows that this is equivalent
to e*T'(x) = 8(—=x) (as again may be verified directly).

11.2. Expression of the (E,q) and (C, 1) transformations in
terms of 3. The (E, g) mean of s, was defined by

p— 1 N m -n
tm = (q+l)"‘nz=o (n)qm Sps
and (8.3.5) shows that
Anty = (g-+1)-"Ans,,.
Hence, if we write A"s, = u,,, A", = v,,, and denote the diagonal trans-
formation #;, = p,,s,, by , then we have ¢t — 8v, v = pu, u = 8s, and so

(11.2.1) t=As,
where
(11.2.2) A = §us,
(11.2.3) p = (g+1)
Next, if ¢, is the (C, 1) mean of s,, so that
1 m
tm = "ﬁ 8.",
n=0
n n j k n
—_ —1) - =
then Anto = z ( l) k) +l z 8 Z ¢181,
k=0 =0 =0
n
_ ™) 1
where ¢ = ;( 1) (k)lc_+l°

But this sum, written from ! = » downwards, is

(—1) m\n+1  [n\n+41 (=) _(n-H) (n—}-l)_ }
n+1 {1—(1) n +(2)n-l_m} RS {1 1 )T 2 ¢
the series being continued for n—I-1 terms; and hence
_(=1)[n
& —m(l)'r ,

t The sum of the first p coefficients in the expansion of (1—z)"*! is the pth coefficient
in that of (1—zx)".
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1 < n 1
ng o 1\ — —Ang,.:
Thus Ang, =Tl ,Za (—1) (l)s’ n+1A So5
and it follows again that the transformation can be expressed in the
form (11.2.2), with

(11.2.4) fn = (n+1)-1.

11.3. Hausdorff’s general transformation. We call the trans-
formation

(11.3.1) t = (Sud)s = Xs,

where p is any diagonal transformation, a Hausdorff or § transforma-
tion, and its matrix an § matrix. Thus the (E,q) and (C,1) trans-
formations are $ transformations. We shall use §, or ($,u) for the
transformation, [§| or |§, u| for its matrix.

If § = 8ud, ' = &u’8, then

99" = uddu's = Sup'd = dp'ud = $'9.
Thus

THEOREM 197. Any two $ transformations are commutable.

Conversely, suppose that y = 8ud is a given § transformation; that
the numbers u, are all different; and that A is any transformation com-
mutable with y. If @ = 8A3, then A = 8wd. Also u = 8y5. Hence

wp = SA38yd = d)yd, pw = 6y38A8 = dyAS;
and Ay = yA, by hypothesis, so that
(11.3.2) Wy = pw.
If wis tm = D, Cmn S
then (11.3.2) implies
2. CrnbinSn = Bm 2, CmunSn

for all s,; and since p,, 7 p, when m  n, this implies that c,,, = 0
when m # n. Hence w is a diagonal transformation, and A = §wd is an
$ transformation.

The condition on y is satisfied by the (C, 1) transformation. Hence

THEOREM 198. The class of § transformations is that of transformations
commulable with the (C, 1) transformation (or any other § transformation
all of whose p,, differ).
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It is easy to determine the coefficients in any $ transformation in
terms of its u,. For, using %, and v, as in § 11.2, we have ¢ = v, i.e.

2 —1r(7)am = Z (=17 () 2,
2 —r(Tn > <12 (0)s, —Z% .

p=0
where

e o ST e

n=p n=p

()Z (o= ()i

and so, writing » again for p,

m
tm = Z (‘r,::) A7"~”i"n . 8‘"’

n=0

THEOREM 199. The general § transformation is

(11.3.3) bt = 2 Amn Sns

where
(11.3.4) A, = (:’:)Am“"/»n m<m), 0 (n>m)

We shall write

(11.3.5) tnp = APp,
so that
(11.3.6) A = (’;‘)un,m—n (0 <n<m).

11.4. The general Hoélder and Cesaro transformations as $
transformations. We denote the (H, k) and (C, k) transformations by
H® and C®), as in § 5.9, and write H and C for H® and C®: H® is so far
defined for k& = 0, 1, 2,... only, and H® = HF, i.e. the result of & repeti-
tions of H.

If A = 8ud, X’ = &u’8 then

M = uddu’d = duu's.
It follows that H® is the § transformation corresponding to

= (n41)-*,
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On the other hand, it is not obvious that C® is an § transformation,
even when k is an integer. We proceed to show that it is one, and to
determine the correspondlng [T

In this case
t, (m+k) z (m—n—l—k l)sn,

Anty = i (—1)r(p)tp

o

_ I(p—q+H)
= e+ Z 1 S T DT =g+ DTG TE+D)

Moot (ralnsh
P(n—q+1)I'(n+-k+1)  Hn—q+k—1)

+ (n—q)(n—g—1)(nt+k)(nt+k—1) ’
1.2(n—q+k—1)(n—q+k—2)

P(n—q+k)  T(—n+q—k+1)T(n+1)
Fn—g+ T (n+k+1)  T(—k+DI(g+1)

)

-1 & k!
Hence Aty = (n+ ) z (—1)2 (Z) 8y = (n_lt ) Arsy, I

= (—1)"&T(n-+1) +

== (——1)'%1‘(n+ 1)

k
q=0
and the transformation is an § transformation with
nk\-!
Hp = A
Thus

THEOREM 200. The H® and C® transformations are $ transformations,
with

_ 1 _[n4E\?
(11.4.1) o = oty m,—( ! ) :

+ By CGauss’s formula for the sum of the hypergeometric series F(x, B;y; 1), and the
equation I'(x)[(1—x) = = cosec zn. It is convenient to suppose k non- -integral in making

the calculations.
1 This is (9.6.9): the proof there was less direct.
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Theorem 200 has been proved for all & for which we have defined the
Holder and Cesaro means, i.e. for £ = 0, 1, 2,... in the first case and
k > —1 in the second. It leads us naturally to define H®, for non-
integral k, as the § transformation with u, = (n--1)-*. We shall see
later (§11.11) that the two systems of means are then equivalent for
all k > —1. :

11.5. Conditions for the regularity of a real Hausdorff trans-
formation. In order that the transformation
(11.5.1) b =3 CoonSn
should be regular, it is necessary and sufficient, after Theorem 2,
(1) that

(1152) Ym = Z lcm,nl <K,
n

where K is independent of m; (2) that

(11.5.3) Gy = O

for every n, when m —> co0; and (3) that

(11.5.4) C = Z Cm > 1

when m —-c0. We have now to interpret these condltlons for an §
transformation, in terms of u,. We suppose p,, real.

If s, =1 for all », then u, = A”sy and v, = p,u, are 1 and g,
respectively for n = 0 and 0 for » > 0, so that ¢, = A", = p, for all n.
Hence

< (m
(11'5'5) ;(n)”n,m—n = Mo
(as may, of course, be verified directly),t and (11.5.4) reduces to
(11.5.6) po = 1.
Thus the conditions (11.5.2), (11.5.3), and (11.5.4) are

< [m
(11.5.7) My = > (" )ltnmonl <K,
n=0

(11.5.8) (’;’)um >0 (n=0,1,..),
(11.5.9) o = 1.

We proceed to analyse the meaning of (11.5.7), and to show that, when
it is satisfied, (11.5.8) may be replaced by a simpler condition.

t For example,

2 (,:) ATy = Z (r:) APBER Y — (A4 E)py = .
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11.6. Totally monotone sequences. In the sections which follow
we shall be concerned with real sequences only. A sequence (¢,) will
be said to be fotally monotonet if
(11.6.1) AP, =0
forn=0,1,.,p=0,1,... Thus

L p!
2+l (et D)(n+2). (n+p+1)
80 tha.t the u, of the (C, 1) transformation is totally monotone. If u,
is totally monotone, then u,,,,, = A™ "y, > 0, and

m
(11.6.2) M, = Z (n)f"n,m-n = Fo»

by (11.5.5), so that (11.5.7) is certainly satisfied. Analogy with the
theory of functions or sequences of bounded variation (an analogy
which we shall find to be closer than appears at first sight) then suggests
the truth of the following theorem.

THEOREM 201. In order that a real p, should satisfy (11.5.7), it is
necessary and sufficient that
(11.6.3) = ap,—PBps
where o, and B, are totally monotone.

It is obvious that the condition is sufficient, by (11.5.5), and we have
to prove it necessary.

We write (Eu, = u,_., and)

El Up,p = Up1a,ps Ez Upp =
Then

(11.6.4) Mop,p = APp, = (B +A)Ap/"n = Apf"n+1+Ap+lp'n
= Pn+1,pHPaps = (By+Ey)pn,

n,p+1°

and
(11.6.5) ll“n,pl < Il"n+],pl+ll‘n,p+ll = (E1+E2)II‘%J)I'
If
< (m) < (m
(11.6.8) pppm = zo (r)l"n-l-r,pm—-r’ /‘:,p,m = zo (r)“"nﬂ-,pﬂn——r ’
r= r=
then
= [m
(11.6.7) Pnpm — Z (r)E;Eg“’/.an = (E1+E2)ml"n,p = Mn,p>
r=0

m
(11.6.8) f‘:,p,m = z (”:)E;Eg’-rlf"n,pl = (E1+E2)m“"n,p| = ‘I"’n,p')

r=0

1 More properly, perhaps, ‘totally decreasing’. A sequence such as ($,) = (e?), in
which A?¢, has the sign (—1)?, might be called ‘totally increasing’.
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by (11.6.4) and (11.6.5). Also
(11.6.9) pEom = M, <K,
by (11.5.7). Now

.u'n,p,m (E1+-E )mli"n,pl (E1+E2)m+llu‘»'"n,p! = u“':,p.m+1’
by (11.6.5), so that u} ,, increases with m. Also

f":,p,m = (E1+E2)m |I"n,p| = (E1+E2)mE'1L Egl#o,o]
< (""1‘;”) (B Ey)n By B

n+
< @B (") BBl

=0
= (By+ Ep)™( By Eo)" 4P |pgo| = (By+Bp)™+P+m|pg
= .“"I?,O,n—i-p-%m = Mpipim < K,
by (11.5.7). Hence
(11.6.10) P pm > hm p,,, o == Hon.ps

say, when m —o0. Also h“n,pl = |tppm| < timpm Dby (11.6.7) and
(11.6.8), and so

(11.6.11) Pnp < Mapr

In particular

(11.6.12) [tnl = lpnol < pao = pas
say.

Next F':,p,m+1 = (B, +Ey)m+ tn,p| = (E1+E2)F‘:,p,m’
by (11.6.8), and so
F':,p+l,m = I"':,p,m+1_u“':+1,p,m'

Hence, making m — oo,

I"':,p+1 = i":,p—f”::+l,p = Af“:,p’
and so u , = APu}, = APu%. Thus

IApP"nl - “"n,pl == Apf“'n
Hence, finally, if we write

Oy = %(I“':"I—F'n)! B, = Jz”(l"':“.“'n)’

then Bn = 2P, APoa, > 0, Arg. >0,

which proves the theorem.
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11.7. Final form of the conditions for regularity. We now
assume that condition (11.5.7) is satisfied, and use it to simplify
condition (11.5.8). We shall prove that (11.5.7) implies (11.5.8) for
n > 0. Whenn = 0, (11.5.8) is

(11.7.1) Amy, — 0;

and this, which is not a consequence of (11.5.7), must be kept as a
separate condition.

A sequence which satisfies (11.5.7) is the difference of two totally
monotone sequences. It is therefore sufficient to prove that

(11.7.2) A = (’:) Hmmen = 0

when # > 0 and (u,) is totally monotone, so that Apn = 0. It follows
from (11.3.5) and (11.3.6) that

Enm—n == Bnm-n+1THat1,m—ns
(m—+ 1)’\m,n = (m—n-+ DApiin+ (04 DA iin+1s
or (m—+- Dma—2Ani1,0) = (n+ 1))\m+1,n+1—”)\m+1,n-
Summing with respect to n, and writing
Am,n = Am,0+Am.1+“'+Am,-n’
we obtain
(11.7.3) (m+1)(Amn— Amsrn) = (41 Apnign4q = 0.

Hence A,,,, decreases as m increases, and tends to a limit when m — co ;
and therefore A, , = A, ,—A, ., tends to a limit /,. In particular
Amo = Apo—> 1. Also, for n > 0,

' n+1
Pm = Am,n—Amﬂ,n ~ n_l—f_-—l ln+1,

when m - o0, by (11.7.3), and ¥ p,, is convergent, so that lyy1 = 0.
Hence

(AL7.4) N>l (11.7.8) A, >0 (n>0).

Thus (11.7.5), which is (11.5.8) for n > 0, is a consequence of (11.5.7).
But there is nothing to show that I, = 0, and this condition, which
is (11.7.1), must be retained. The sequence (1,0, 0,...) is totally mono-
tone, but here A™u, = 1 for all m.
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We have thus proved
THEOREM 202. In order that the transformation ($, i) should be regular,

it is necessary and sufficient that (i) should be the difference of two totally
monotone sequences, that

(11.7.6) Am™py — 0,
and that
(11.7.7) o = L.

It is important to notice what follows from the main condition
(11.5.7) alone, without the two subsidiary ‘normalizing’ conditions.
We have then

cm,O = )‘m.O - lO’ cm,‘n = ’\m,'n -0 (n > 0):
and Y c,, = po for all m. Thus the conditions of Theorem 1 are
satisfied, with :
8o = lo, 8,=0 (n>0), 8 = po
The transformation preserves convergence (belongs to I,), and

bt —> o S+lo(S9—3)
whenever s, - s.

The condition I, = 0 excludes, for example, the sequence (1,0,0,...), while
to = 1 excludes (2,2,2,...). Both exclude (2,1, 1,...). The transformation defined
by the second of these sequences becomes regular (in fact the identity) when
{iy is divided by 2. In the third, A™u, is 2 for m = 0 and 1 for m > 0; the trans-
formation becomes regular if u, is decreased by 1. The significance of these
supplementary conditions will become clearer when we have proved Hausdorff’s
theorem about the integral representation of y,.

11.8. Moment constants. We call
1
(11.8.1) P = jxn dy.t
0
where y = x(z) is a real function of bounded variationin 0 <z < 1,
the moment constant, of rank =, of y. We may suppose without loss of
generality that

(11.8.2) x(0) = 0.

If also

(11.8.3) x(1)=1

and

(11.8.4) x(+0) = x(0) =0

so that y(z) is continuous at the origin, then we shall call u,, a regular
moment constant.

1
t The function 2° is defined at z = 0 so as to be continuous. Thus p, = jdx.
0



11.8] HAUSDORFF MEANS 257

If x(x) increases with z, then
Hnp = BPp, = fxn(l_x)p dx = 0,}

so that p, is totally monotone. Generally, if P(x) and N(z) are the
positive and negative variations of x(¢) in (0, z), then y(z) = P(z)—N(z)
and

Py = f an dP— f 2" dN = o, —B,,

where («,) and (B8,) are totally monotone.

The function y(x) may have an enumerable set of discontinuities, and
the value of the integral (11.8.1) is not affected by any change in the
value of x(x) at a point of discontinuity inside (0,1). In particular we
may suppose that
(11.8.5) x(®) = Hx(x—0)+x(z+0)}

for 0 <« < 1, in which case we shall say that all discontinuities of
x(x) are normal. The expression of u, as a moment constant is then
if possible, unique.

This follows from

THEOREM 203. If
l"’n= J‘xndXI = fxnde
where x, and x, are functions of bounded variation, vanishing at the origin
and with normal discontinuities, then y; = x5 for all x.
It is sufficient to show that, if
(11.8.6) fxn dy=0 (n=0,1,2,..),

x(0) = 0, and x(x) satisfies (11.8.5), then x(x) = 0 for all z. It follows
from (11.8.6), with » = 0, that x(1) = 0. Hence, integrating by parts,
nfx"ﬁlx(x) de=0 (n=1,2,.),

and so f 2"x(x) de = 0 for n > 0. And if we write

x

d(z) = [ x(0) dt,

0
and integrate again by parts, we obtain

(11.8.7) fxn¢(x) dr=0 (n=0,1,2..).

1 Here, when the limits of an integral are not shown, they are 0 and 1.
4780 s
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Since y(z) is continuous, there is a polynomial @(x) such that
[y—@| < € for 0 < « < 1. Then, by (11.8.7),

[¥rde = [4Qdz+ [ Yp—@Q) do = [Y(—Q) dz < « [ 4] da,

and so, since ¢ is arbitrary, f Y?de = 0. Hence ¢ = 0 for all x; and
hence x = 0 at all its points of continuity. Since these points are dense
in (0,1), and x(x—0) and x(z+0) exist for every z, it follows that
x(@—0) = x(xz+0) = 0; and therefore by (11.8.5), that x(x) = 0.

We now interpret the conditions (11.8.3) and (11.8.4) in terms of
B First, it is plain that (11.8.3) is equivalent to u, = 1, i.e. to (11.7.7).
Next

Amyy = f (1—z)mdP,  AmB, = f (1—z)m™ dN

are non-negative and decrease as m increases, so that
Amay—>a =0, AmB, > b.2 0, A™pg —> a—b.
We can choose 5 so that 0 <<y < 1 and P(y) < P(+40)-+e¢; and then

7 1
Amay < [P +(1—mm [ dP < P(n)+(1—g)"P(1) < P(4-0)+2¢
o i

for sufficiently large m, so that a << P(+0).
On the other hand,

n
Amay > (1—m)m [ dP = (1—n)"P(n) > P(+0)—e
0

for 7 << n(e,m). Hence A™x, > P(+0), and so @ > P(+40).

Thus @ = P(40), and similarly b = N(40). It follows that
. Ampy — P(+0)—N(+0) = x(+0);
in particular (11.8.4) is equivalent to (11.7.6).

Summing up, we have proved

THEOREM 204. Any moment constant u,, is the difference of two totally
monotone sequences. The moment constant of an increasing x is totally
monotone.

THEOREM 205. In order that a moment constant u, should satisfy the

conditions of Theorem 202, and so define a reqular § transformation (H, p),
1t 18 necessary and sufficient that p,, should be regular.

11.9. Hausdorff’s theorem. We now prove Hausdorff’s funda-
mental theorem, which shows that the results of Theorem 204 are
reversible.
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THEOREM 206. If (u,) is the difference of two totally monotone sequences
(ox,) and (B,,), then p,, ts @ moment constant.

It is plainly sufficient, after § 11.8, to prove

THEOREM 207. If (u,) is totally monotone, then p, = f ™ dy, where
x(%) is an increasing and bounded function of x.

The proof depends upon an important general theorem of Helly: if
Xq(2) is a sequence of increasing functions of z, uniformly bounded for
0 < z < 1, then there is a bounded increasing function x(x), and a sub-
sequence (q;) of values of q, such that y,(x) - x(x) when ¢ -> o through
(22)-

We define y,(z) by

q
0 = 0’ = = . 0 < 1 .
XQ( ) Xq(x) o<sz<q:c Aq,.tz ogéqx (s).u’s,q s ( <L r < )
Then x,(x) increases with z; and (11.5.5) shows that x,(1) = p,, so that
Xg(%) is uniformly bounded.
It follows that

Ho = Xel1)—Xg(0) = lim{xg(1)—xo(0)} = x(1)—x(0) = | .
If » > 0, then
HBn = My = F’n,l+l"n+1,0 = :U'n,2+2."'n+1,1+f"n+2,0
9=t (0 m
T e = Z (q & )l"n+k,q-n—k

k=0

for all ¢ > n. Thisis

2 (g—m)!  (ntk)! (g—n—h)!
k!(q_n_k)! q! n+k Kn+kg-n—k
2 (g—m)!(n+k)! L (g—n)!s!
—-k_ —k—'q|—_ n+k Kntkg-n—k = £ q!(s—n)! s Hs,q—s

3(s—1)...(s—n+1 <& 8(8—1)(s— n+l)()
- Z g(g—1)... q—n+1)( )“’“ B Z (@— 1) (g—nt1)\s/
(the terms added being all zero).
We divide (0,1) by points z, = 0, #,,..., , = 1, suppose ¢ large
enough to make ¢gz; > n, and write
s(s—1)...(s—n+1) (q)
8,3—8?

) —
st q(g—1)...(g—n+1)\s

a1 <8<9%i+1

o
so that P =1§0 S,




260 HAUSDORFF MEANS [Chap. X1

Then, since
x@)=xe) = > (Jeog-s
0<8<gn

we) k@) = 3 (Yesae ¢> 0
we have
rg(xg—1)...(x,g—n+1)
11.9.1) 2L
( ) q(g—1)...(q—n+1)
<Sq)<xl+14(x1+xq 1)...(%1¢g—n+1)
i q(g—1)...(q—n+1)

{Xg(®141)— X))}

{Xq(le) - Xq(xl)}'T
Hence, first,

r=1 D 20 4@ g~ 1) (2 g—nF1)
—_ ) 1+1 1+1 I+1
_zos;a < ;, 9(g—1)..(¢g—n+1)

From this, making ¢ —co through an appropriate sequence (g;), we

obtain r—1
Pn S Z 89 < Z a1 {x(®@er) — x (@)}
q—q;—mz =0

We can obtain a lower bound for yu, similarly from the first of the
inequalities (11.9.1); and so

(119.2) 3 o {eia)—x(@} < pn <3 alxem) —x(E}

But the Stieltjes integral f x™ dy is the common limit of the two sums

in (11.9.2) when r tends to infinity and the largest interval (z;, ;,,) tends

to 0; and therefore u, = J' z® dy. The integral is not affected by any

change in the value of x at its discontinuities inside (0,1). We may

suppose that they are selected so as to normalize the discontinuities.
We can now resume our results in

THEOREM 208. (i) In order that (9, ) should be a regular $ transforma-
tion, it is mecessary and sufficient that p, should be a regular moment
constant. (ii) In order that (H,u) should be a convergence preserving
transformation it is necessary and sufficient that w, should be a moment
constant. '

{Xe(®112)— xg(®)}-

In the general case the variation of x,(t) in (0,z) is given by

q
RO =0, K= > (Ve @<z
0<8<gx
1 This is obviousif I > 0. If I = 0, then the first member in (11.9.1)is 0, while the

terms of the second are 0 for s < n—1, and the remainder non-negative and not greater
than the corresponding terms of the third, whose terms are all non-negative.
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and the variation of y(f) = lim x,,(¢) in (0, ) is V(z) = lim ¥,(z). For it
is easily shown that, if 0 < a<b< 1 then

_[ ldy| < lim J‘ |-
On the other hand,

ofl ldxql = Z(Z)m,,,,-.l =Zo(§) fl w*(l—x)«—**dx[
< j { i(j)xsa—x)«-s}ldxl - f dxl.

8=0

[

The functions ¥, and V are derived from |u, ,_,| as x, and x are derived
from p,, ,. Thus V corresponds to the u} of §11.6 as x corresponds to
s and

,L;.-_-fxndV=fxndP+fxndN=an+p,,.

Any expression xy = 6—¢ of x as the difference of two increasing
functions corresponds to an expression u, = p,—oa, of u, as the
difference of two totally monotone sequences. The decomposition
x = P—N is the ‘least’ in the sense that § = P+w, ¢ = N-+}w, where
w is an increasing function; and the decomposition u, = «,—p, is the
‘least’ in the sense that the components p,, and ¢, of any other decom-
position are of the forms p, = «,+¢,, 0, = B,+{,, where {, is totally
monotone.

It is instructive to follow out the construction of x in a few simple cases.

(i) If p, = 1 for all n, then A,, is 0 for 8 < p and 1 for s = p; x, is 0 for
0 < # < 1 and 1 for x = 1, for every ¢; and y is the same function.

(ii) If p, = (n+1)7! then, for 0 < ¢ < p,

A p! Av—s i p (p—a)tst 1
ve = Tp—an™ o1~ slp—a) @+ ~ pF1’
1 1
and =0 x@ =" (<< aso)
The limit function y is x.
o Ip _ (n+k)-1__ T'(k+1)T(n+1)
(1) Ba=\ % ] = Twmti+1) °

where k > 0, then a straightforward calculation gives

(T 2 0= 2 (07 = ()7

s<qx 8<[gx]

Z Ao l_(qzk)"(q—[qw}+k—l) > 1—(1—a)t,

k
8<qx

and P = Ix”dx = kfx"(l——x)"‘ldx.
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(iv) If p,, = a®, where 0 < @ < 1, then

X(0) = 0, x,(x) = z (Z)a’(l—a)q—s O<z<gl)
0<s<gx

It follows from Theorem 138 that yis0for0 < x <gand 1fora <z g 1.

It is sometimes convenientt to modify the definition of x.(x) slightly. We
defined y,(z) as a step-function which has a jump A,, at = r/g. We may
eliminate the discontinuities by straight lines connecting the angles of the graph.
This process gives a X () continuous except perhaps for z = 0, where it has
a jump Ay, and with a derivative gA,, for (r—1)/g < x < r/g; and it is plain
that X, (x) — x(x) when ¢ — co appropriately.

11.10. Inclusion and equivalence of $ methods. The general
problem of the inclusion or ‘relative strength’ of two § methods is
difficult, and its solution, which has been effected all but completely
by Rogosinski and Fuchs, depends upon the study of the ‘Mellin trans-
forms’ M(z) = [ # dx(t), associated with the methods, for complex z.
The problem is much simplified if the moment constants u,, and pu, of
the methods do not vanish for any n; and we confine ourselves to this
case, in which the solution can be stated very simply in terms of u,
and y;,.1

In what follows, then, we assume that

(11.10.1) po 0,  ph#£0 (n=0,1,2,..).
If the transformations are A = 8u8, A’ = 8u'8, then

sloa—slssus—slus—ss—1,
f p 7
the identity. Thus

a—sls, N —sws,  AAt—sws.sls =3k,
p p [
so that A’A-1 is the § transformation formed from u,/u,. But, in order
that (9,u’) should include ($,u), it is necessary and sufficient that
As -1 should imply A's = XA-1(ds)—>1, i.e. that A’A-! should be
regular; and this is so if, and only if, u,/r, is a regular moment constant.

THEOREM 209. Suppose that (9, u) and (H, n’) are two regular § methods
subject to (11.10.1). Then, for (H,p') to include ($, i), it is necessary and
sufficient that py/u, should be a regular moment constant. For the two

+ See, for example, § 11.16.

1 If (9, p) and (H, p’) both sum a series, then the sums are necessarily the same.
For if t,, = Hs,, tm = £’s, are the means of s, corresponding to the two methods,
and £,, — s, tj, — &', then $'t, = Hty by Theorem 197; §'4,, — sand Htn — &', because
the methods are regular; and therefore s = s’. Thus any two regular § methods are
‘consistent’ in the sense of § 4.2.
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methods to be equivalent, it is necessary and sufficient that u,|u, and w,/w,
should both be regular moment constants. In particular, for ($,u) to be
equivalent to the identity, it is necessary and sufficient that p, and 1/u,
should both be regular moment constants.

In the next section we apply Theorem 209 to some important special
cases. We make repeated use of the simple theorem which follows.

THEOREM 210. Sums, differences, and products of moment constants are

themselves moment constants. The product of two regular moment constants
18 a regular moment constant.

The assertion about sums and differences is obvious, and we need only
consider products. First,

Apn i = o Apin+Bpty - pinss,
A%ty pip = prn Apin+ 2011, Ay 11 +A% - pir i seens
so that A?u,, > 0 and APy, > 0imply A?u, u, > 0. Hence the product

of two totally monotone , is totally monotone.
Next, if p, and p,, are moment constants,

Hon fn = 0ty OBy Bty B — o B,
where «,,... are totally monotone. Hence the product of two moment
constants is a moment constant.
Thirdly, py = 1 and pg = 1 imply popy = 1.
Finally, we have to show that Amu;—>0 and Amu;->0 imply
A™uo e — 0, and it is plainly sufficient to prove this when p, and p;,
are totally monotone. Now

m A— N MAAr m-—r,,’ — < S —
Ao pg = Z (r)A o A"y mrgo+r=§+1 = 8,15,

r=0

say. We can choose R so that A'p, < € for r > R, when

s [m , ,
S <e Zo (,'.)Am_r#r = €
by (11.5.5); and §; — 0 when R is fixed and m —> 0. Hence A™uypuq — 0;
and this completes the proof of the theorem.}

11.11. Mercer’s theorem and the equivalence theorem for
Holder and Cesaro means. If A and A’ are two equivalent $ methods
(9, ) and (H,p'), then we write A= A’. In particular we write A= 1

1 Alternatively we might have used Theorem 208.
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when ] is equivalent to the identity. Plainly AVX®, X0 =Tif X&=1
fors=1,2,...,r

If g

an+1 « —a 1

(11.11.1) ’L”—Bn—}—l —ﬂ+ 5 Bnil’
where « and B are positive, then either u, or (a/8)—pu,, is totally mono-
tone, p, = 1, and A™u, — 0, so that p,, is a regular moment constant.
Since the same is true of x; 1, A= I. The transformation

0‘).so—l-sl—l-...--}—sm
m—+1
of §5.9 is the § transformation corresponding to
l—« ocn—l— 1
n+1" nt ntl’
and p, and ;! are both regular moment constants. We thus obtain

another proof of Mercer’s Theorem 51.
If u, # O for all n, and py, is a finite product

. a;n+1 @
o = m.l—[ﬁan = p, [T 0

where the « and B are all positive, so that X® = I, then pp/u, and p,/uy
are both regular moment constants, and X’=A. If k is a positive
integer, and

m = 0‘8m_i_(1_

pn = at—

_ 1 . (n+k)—1 _ k!
= BT\ ] T aiDero k)
then Pn __ 2042 3n+3  kntk

b N2 043 T ntk’
and each factor is of the form (11.11.1), so that A= A. This gives
another proof of the equivalence theorem (Theorem 49).

We defined Holder means of non-integral order in §11.4, and it is
natural to ask whether the equivalence theorem can be given a corre-
sponding extension.

THEOREM 211. The (C, k) and (H, k) means are equivalent for k > —1.

We have to prove that
Pl = ("','G'k)-l (n+1)F, o) = puo = (n +1)""("+k)

are regular moment constants. Since

o) n+k+1
<k+1) (k+1)n+k+1’
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it is sufficient to prove this in some interval s < k < s+1 of values of
k, where s >> —1 and, since integral values of k are already accounted
for, we may suppose that 0 < k < 1. Now

(11.11.2) p® = (n-4-1)%- 11_‘(1]5(—47;22—‘5:_”1—4;2) = D(k+1)+(n+1)k1u,,

where

_ I'(n4-2) _
= D D {2 — (o1 g

— k(k—1) f x"{x(l-—x)"-z—(log%)k_z} d,

so that u, is a moment constant. Since (r--1)k-! is also a moment
constant, it follows from (11.11.2) and Theorem 210 that p( is a moment
constant.

Secondly, p{® = 1. Finally, u, is the moment constant of an abso-
lutely continuous x, so that y(+0) = 0 and A™u, > 0; and (n-1)k-1
satisfies the corresponding condition. Hence Amp( — 0, and p is a
regular moment constant. The proof for o{¥’ is similar.

We may prove in a similar way that the (C,k) and (H,k) methods are
equivalent to the § methods corresponding to either of
_ T(k+a)T(n+a) __( a )"
* Ta)(ntk+a) " \nta
for any positive k& and a. Or again we may prove that
(n+a+B)/(n+a)(n+B) — T(a+1)I'BE+1) T(nta+B+1)T(n+1)
atB B T@+p+1) IT(ntatDI(n+p+1)
and its reciprocal are regular moment constants, and so complete the proof of the
theorem stated in the note on §5.8.
Tt is also interesting to work out the actual expressions of p{¥)and o{¥ as moment
constants. Suppose, for example, that & is integral. Then the formal solution of

1
(nt 1) i}
e e CF'S RS N ) of”‘ = f"”w

0

. ! (s4-1)% Lt
18 ¢(x) = % f (8+ 1)(8—|-2)...(3+k) T
e—1i00

ds;

and the integral may be calculated as a sum of residues. We find that

AL1Le) g0 =0, S+ =k,  $0) = () (-t >0,

a form of ¢(t) which may be verified directly.
Similarly we find that o¥ is expressible by an integral with

1 , 1 d -
MO =0 0= 0= (o) wlogwrt]
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These formulae remain true for non-integral k if the operation of differentia-
tion is interpreted appropriately. Thus (11.11.4) still holds for 0 < k& < 1 if k!
is replaced by I'(k+ 1) and the derivatives are defined in the manner of Riemann
and Liouville.

It should be observed, finally, that we have shown that the Holder and Cesaro
means are equivalent in the range —1 < &k < 0, when neither is regular.

11.12. Some special cases. (1) For the (H, k) method, with k& > 0,

Mo, = (11,_—1-1_1)7‘ = f,—(lf) f x"(log Zvl-)k_l dx = J znd(x) dz.

Here y, the integral of ¢, is absolutely continuous.
(2) For the (C, k) method, with &k > 0,

T e
and x(z) = 1—(1—=)* is again absolutely continuous.

(3) These examples suggest that the ‘strength’ of an $ method will
depend upon the ‘smallness’ of u,, increasing as p, becomes smaller.
But this principle, though valid up to a point, must not be interpreted
strictly, the relations between two moment constants which govern
their relative efficiency being of a more subtle character.t

Thus u, = a™, where 0 < a << 1, corresponds to the method (E,q)
with ¢ = (1—a)/a, and tends to 0 more rapidly than any (n4-1)-*; but
it is not true that (E, ¢) includes (C, k), even when g is large and k small.
The two methods are in fact ‘incomparable’. Suppose, for example,
that £ = 1. Then it is easy to verify that, if 4, = (n+1)-1and u, = a®,
neither of p, = pu,/u, and o), = up/p, is & moment constant. This is
obvious for p,, since p, -0, and we need only verify it for o,,.

If 0, = (n+1)a™ were a moment constant then (since a” is one) we
should have

na = f andy = y(1)—n f aly(z) doe = n f ey (1)— x(x)} da
for n > 0. Dividing by » and replacing » by n-1, we obtain

ar = % f z™{x(1)—x(x)} do = fw”dxl (n > 0),

where y, is absolutely continuous. But a” = f x™ dy,, where yx, is 0 in
(0,a) and 1 in (a, 1), and the dual expression of a” contradicts Theorem
203. We thus see, as we have proved directly in §9.8, that there are
series summable (C, 1) but not summable (E, g) for any g. The argument
is easily adapted to any positive %.

1 See the remarks at the beginning of § 11.10, and the notes at the end of the chapter.
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(4) If p, - 0 too rapidly, it cannot be a regular moment constant.
This is shown by

THEOREM 212. There is no regular moment constant p, such that
c"u,, — 0 for every c.

If p, is a moment constant then
(1L121)  ppye = [ 2™ dy = x(1)—(n+2) [ 2n+iy da

= x()—(+Dx () +@+2)(n+1) [ 2y do = (n4-2)(n+1) [ an$ da,

where
(1L12.2) (@) = x@)—x0)+1—2)x(1), @) = [ X0 d,

so that ¢(x) is absolutely continuous. We consider the function

of the complex variable w = u--7v. We have
_ x® — Fon+2 1
fe) = f 40) 2, i = 2, G et T)
for large w, and the series is convergent for all w 7% 0. Hence f(w)
defines an integral function of 1/w; in particular it is regular on
0 <w< 1 Butif0<u <1, then

(11.12.3) ﬁ{f{u——i@))—f(u-l—.iv) = % (xtv;%:z‘_—vzdx - ¢(u)

when v > +0; and so ¢(u) = 0 and p, = 0 for n > 2.
Also ¢'(x) = 0 for 0 < 2 < 1, and therefore, by (11.12.2),
x(@)—x(1) = 0
for almost all z, so that
M1=fxdx= x(l)—fxdx= 0.
Thus the sequence (u,) is gg, 0, 0,...; and this is not regular, whether
1o = 0 or p, #~ 0, since either (11.7.7) or (11.7.6) is violated.

It follows from the last remark that p, = (n!)~! is not a moment constant.
It is easily verified that

1 (=1p P, pYp—1)?
Are = T{l‘ﬁ"'"T —} = L,(1),

where L,(x) is Laguerre’s polynomial. It is known that

Ly(1) = etn—tp~tcos(2pt—}m)+0(p~d)
for large p, so that APy, is not of fixed sign.
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It is simpler to prove that a totally monotone u, satisfying the condition of
Theorem 212 must vanish for n > 1. For if p, = [a"dy and y is an increasing
function not constant in 0 < z < 1, then there is an interval (a, b) in (0, 1) for which
a >0, x(b)—x(a) = w > 0; andp.,,>wa

11.13. Logarithmic cases. We now consider a form of y, which

leads to an $ method included in and weaker than all the (C, k) methods
of positive order. If ¢ > 1,1 > 0, then

-]
1 ¢-1

1
0 ) nay d

fogmTa)} — I f fite-tlontmse) dt —

1 [ode r ' (
f wt-le—~n+an o — j e~ miDul(y) du = f z"P(x) dz,
P () @)

0 0 0

premry tl-lut

1
where $(x) = ¢(log 5.)’ plu) = u]."(l) T(@) ™ *

The inversions are legitimate because all the functions are positive.
It follows that
loga

(11.13.1) oy = {log L

is a regular moment constant.

It is not difficult to prove that these methods are weaker than (C, k)
or (H,k) for every positive k, but the details of the proof are a little
tiresome. Let us suppose for simplicity that I = 1, and assume that,
as was stated near the end of §11.11, (H, %) is equivalent to the H
method with

, a \¥
(11.13.2) p = (m) .

We have to show that, if y,, and u, are defined by (11.13.1), with [ = 1,
and (11.13.2), then y,/u, is a regular moment constant and pu,/u, is
not. The second assertion is obvious because p,/u, — 0. On the other

hand,
(k) :
il ~Nyk-1 .
dlc T® f ‘ —logi} dt;

and it follows from this formula, with N = n-a, that (n+a)*log(n+ta)
is a moment constant. Thus p;/p, is a moment constant, which is

plainly regular.
Since w, >0, p;! is not a moment constant. It follows that the
methods sum some divergent series.

}l (@ >1,1>0)

N-*logN =
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11.14. Exponential cases. It is also interesting to define regular
methods ($, u2) stronger than any method (C, k). In such a case p,, must
tend to 0 more rapidly than any power of z; but we have seen in § 11.12
that it must not tend to 0 too rapidly. It is natural, after the examples
of §11.12, to consider the case p, = e~4"", where 4 >0, 0 < a < 1.
We prove

THEOREM 213. If A >0, 0 <a < 1, then p, = e~4n" is a regular
moment constant corresponding to an increasing x.

If uly) = e~4v* = ¢, then v’ > 0, 1" < 0, v” > 0,..., and so
pr=—en <0, p'=e(p?") >0,
p = —ev('3=3"V" ") < 0,...,

so that the successive derivatives of n alternate in sign. It follows that
M, is totally monotone, and

(11.14.1) = ftn dx,

where y increases with ¢. Also x(1) = p, = 1. Hence, in order to prove
the theorem, it is only necessary to show that A™u, — 0, or, what is
equivalent, that y(+0) = x(0).
Since u(n) = u(3n) is also totally monotone,
pldn) = pD(n) = [ dx®(u) = [ B dyO(H),
with an increasing x®; so that
(11.14.2) p(n) = f 1 dyo(gh)

forn =0, 14, 1, 3, 2,.... We may suppose x and x® normalized, and
then, comparing (11.14.1) and (11.14.2), and remembering Theorem 203,
we see that y®(#1) = yx(t). Hence (11.14.1) is true whenever » is an
integral multiple of . Repeating the argument, we see that

(11.14.3) uly) = J‘ 1 dy(t)

whenever y is an integral multiple of %, of %, of §,.... It follows by .
continuity that it is true for all positive y. Finally,

8 1
wO =) = ( [ + [ Ja—max > 1—59{x®)—x(0)
0 )

for 0 < 8 < 1, and therefore, making § - 0,
x(+0)—x(0) < p(0)—p(y)-
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Since u(y) is continuous, it follows, on making y — 0, that

x(40) = x(0) = 0;
and this completes the proof of the theorem.

The function y(?) is absolutely continuous; thus

1 ©
wy) = [od@edr = [ eviiu) du,
[ 0

and there is no difficulty in finding explicit analyﬁical expressions for (u) and
é(t). Thus

¢(t) = —"t"l(log—]5)—*9—4'[(41031/0
12
when « = }. When « = } we can show, by the use of Liouville’s formula,

f f e—u—v—njun)y~ip—% dudy = e e—anl"

that $(t) = t—lc,b(log;), P(u) = ‘-3‘-1; ~1K,(2. 3~ A b ),

where K, is the real cylinder funection of the third kind. Generally, the inversion
formula for Laplace transforms leads to

_ (—A)?P y—or-1 _ 1 . Z)sinozpﬂ-l‘(l +op)
) = 7 T kT !
where W is an integral function.
‘We conclude this section by proving
THEOREM 214. The method (9, p) of Theorem 213 includes all (C, k) methods.
We take A = 1, « = } to simplify our formulae; the essentials of the proof
are not affected. We begin by proving that

is a regular moment constant for any integral k and sufficiently large a = a(k).
We write

u Pl = W (u),

ot = (2 et = v, vy = - —klogtt2,
1.3..(2p—3) _,,; kp—1)!

2?7 (t+ayp’
where 1.3...(2p—3) is to be interpreted as 1 when p = 1. The right-hand side
will be positive for p = 1, 2,... and all positive ¢ if

(¢+a)*® T'(p) }“
T {210«/71 To—0)
The minimum of the left-hand side, for varying ¢, is (2p)*?(2p—1)~29+1g > 2pa,
while the right-hand side behaves like 4k2zp for large p. Hence (—1)?~1®)(¢) > 0
for p = 1,2,..., ¢ > 0, when a is sufficiently large. It follows, by the argument
used in the proof of Theorem 213, that p, is totally monotone. Also p, = 1; and
we can prove, as there, that A™p, — 0. Hence the method ($,p) is a regular
method when a is sufficiently large.

Then (—1)P1HP)(2) =
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k
Finally, as in §11.11, o = (‘Z‘::)

defines a method (), o) equivalent to the identity. Hence
Tn = puop = (n+1)re=

is the moment constant of a regular $ method; and hence the method ($,u),
with u, = e~, includes all (C, k) methods.

11.15. The Legendre series for y(x). We return to the proof of
§11.9, in which y(x) is constructed as the limit of a sequence of step-
functions x,(x). It is interesting to have other analytical expressions
for x(z), and one of the most natural is its expansion as a series of
Legendre polynomials. We suppose that p, is a regular moment
constant, so that x(0) = x(40) = 0 and x(1) = 1. If we write

t = %(I'I"x)’ X(t) = 9(37),
so that —1 <z < 1and

1
Hn = f (L—g‘w)nde,
1

then @ is of bounded variation, and continuous at x = —1; and its
Legendre series Y c,FP,(x) converges to #{f(x—0)+60(z+-0)} for
—l<z<1,to0forx= —1, and to §(1—0) for z = 1.

The coefficients ¢,, are given by

1 1
tn=(m+}) [0@)Py@)dz = m+Dwn(1)—(m+}) [ wal@)de,
-1 -1

where w(x) = f P, (t)dt.
Thus -
1 1
(11.15.1) ¢y=1—% f(1+x)d0 =1— ftdx = po—pa,
-1 1]

1 . 1
(11.16.2) ¢, = —(m+3) f w(2)d0 = —(m+3) j wa(2—1)dy
-1 0
for m > 0. Now o ,
-1
(11.15.3) w,(2%—1) = f P (w)du = 2 f P, (2w—1)dw
-1 0

and

P (2w—1) = (—1)"'{1 ~ntl ’%‘w+(m+11)'(’2”+2) m(’l”‘;”wﬂ—...}.
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Substituting in (11.15.1)-(11.15.3), we find

x(t) = Z cum(2t_"1),
where ¢, = py—p, and

1 2
— 2(__1)m-1(m+%) ‘l-ﬁ m‘l"l ml’-2+ (m—+ 1)(;n+ )m("ln . l)l;s }

for m > 0.

If x is absolutely continuous, x' = ¢, and (z) = ${}(1+4=)}, then
the Legendre series of 4(x) is 3 a,, F,(x), where

sy = S () = S o e

11.16. The moment constants of functions of particular classes.
It is natural to ask when x will be a function of some special class; for
example, when it will be absolutely continuous, when it will be the
integral of a function of the Lebesgue class L7, and so on. We confine
ourselves here to one theorem whose proof is simple.

THEOREM 215. In order that
(11.16.1) fhy = fx”cﬁ(x)dx,

where ¢(x) 18 Lr, with r > 1, in (0, 1), it ¢s necessary and sufficient that
D
(11.16.2) (p+1y-1 Eolhp,sl’ < H,
8=

where ), , is defined by (11.3.4), and H is independent of p.
We observe that (11.16.2), by Holder’s inequality, implies
z IAP’SI < H’
so that a p,, satisfying (11.16.2) is certainly a moment constant.

(@) The condition is necessary. For

o= () [ #0—2ps@ae = o0,

where p, () = (ﬁ ) x2%(1—x)?-2, so thatsgo Pps(x) = 1 and

p—s)! 1
[ pouta)dz = (ﬁ)s(ﬁlj! T
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Hence, again by Holder’s inequality,
ool < {[ pra@ e ™ [ pp (@)@ de,
P+l < [ ppa@)I$(@) dz,

@+172 § b, < [ 4@ 3 ppul@)) do = [ 8@ da.

(b) The condition is sufficient. We define y,(z) as in §11.9, but with
the modification indicated at the end of that section.f Then

’ s—1 S
Xﬂ(x) =] .pAp,S (8 =] l, 2,...,?; T < x <§),

)
[ 1)l de = prt > A, < HE,
8=]1 .
by (11.16.2). It follows that there is a subsequence of p, and a function
¢ of L7, such that y, > ¢ weakly and

[ #0) ds = lim [ x0) de = lim{xy (@) — xp(+0)} = x(@)—~lim Ay
0 0

But (p+1)Y2, /" < H, so that A, > 0 and
z 1
x(x) = f¢(t) dt, pn,= j ind(t) dt.
0 0
The proof works, with the appropriate modifications, in the limiting case
r = oo, and gives (p+1)|A,,] < H as & necessary and sufficient condition that

x should be the integral of a bounded function. There is no similarly simple
result for the case r = 1.

11.17. An inequality for Hausdorff means. In this section we
prove an inequality which includes a considerable number of special
inequalities, important in the theory of functions of the class L. We
suppose that y increases, x(1) = 1, and x(@) = x(+40) = 0, so that p,
is totally monotone and the method ($, u) is regular; and that

m

m
(11-17°1) tn = zo (n)V’n.m—n'gn
n—

is the Hausdorff mean of a positive sequence (s,,).
THEOREM 216. If s, > 0,r > 1, then

(11.17.2) S, < (j a1 dx)' S =HrY s,

unless s, = 0 for all n or the transformation reduces to the identity.

t Using x, however, instead of X.
4730 T
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It is naturally supposed that > s, and _[ x~Ur dy are finite. The
integral is not a Riemann-Stieltjes integral, since 2~V is not bounded,
and some generalization of the definition is required. We may define
it either as one of the general ‘Lebesgue-Stieltjes’ type, or as the limit
of a Riemann-Stieltjes integral over (e,1). The second point of view
is the more elementary, but we adopt the first for the sake of concise-
ness. The constant H(r) is the best possible, but we shall not prove
this here. We write

(11.17.3) e, =e,(z) = i ( )z”(l—x)'"‘”s = Z ( )x” m-ng ,

n=0

where 0 << 2 < 1 and y = 1—=z. Then, by Hoélder’s inequality, -

11y <> (’;f) vy (S (’:) wynrf " =S (’:) amym-ng;,

and so

m
(11.17.5) %‘e;ngz (n)xnym—ns;,

m n<m

J— 7
= Z sy,
n

for 0 <o << 1. Now

(11,17.6) ¢, = f{i (Z’:)x"(l—x)"""sn} dx = fem(x)dx.
n=0

Hence, by (11.17.5)—(11.17.6) and a form of Minkowski’s inequality,
(11.17.7) (S < j (S e yirdy < {H(r) Y sp}.

This is (11.17.2), but with ‘<’ for ‘<.
There is inequality at the first stage of (11.17. 7) unless

em(x) = Km‘;b(x)’

except in a set S of  in which the variation of x is 0. We must distinguish
the cases in which the complementary set 8’ includes (a) an infinite
number, (b) only a finite number of points. In case (a) e, (r) = K, $(x)
for all m and an infinity of ; in case (b), x is a step-function.

(a) In this case we write e ,(x) in the form

> (prr=a-uZa=3s

mz=n

en(®) = (1—ztaE)msy = (1—xA)™sy = S (—1)* ") ek Aks,,
0 0 }Z) (k) 0
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If s, is the first s,, which is not 0, then e, (x) = 0 for m < I, and
g(x) = (—1)*Asy = 8,2,
() = (— 1)1+ 1)2ANsg4 (— 1+t 1A, ...

Now ¢/(@) = K;$(2), ¢11(®) = Kpy $(@) in &, 50 that K, # 0, Kppy # 0;
and the polynomials K., ¢(x) and K;e;,, (x) are equal for an infinity of
values of z. It follows that ¢(x) is a multiple of #!, and A™sy = 0 for
m > 1. Hence s, is a polynomial in », which must be zero because
> &, is convergent.

(b) If xis a step-function with jumps «, at x = x;, then z; 7= 0 (since
the method is regular) and ¢,, = 3 oge,(2;). Also

a1178) (34 ) < T3¢ ()|
; xg 1/ry ( 8") (z sr)lJr f x—Ur dX’

by (11.17.7) and (11.17.5). There is inequality in (11.17.4) unless either
all the s, have the same value ¢, or z is 0 or 1. Since z; # 0, and > &,
is convergent, it follows that there will be inequality in (11.17.8) unless
either all the s, are 0 or all the z; are 1. But in the second case x(x) is 0
for 0 <z < 1 and 1 for = 1, and the transformation is the identity.

Examples. (1) If xy=0for0<z<a<]l, xy=1foragz<]1,
then ¢, = e,(a), and is the Euler mean of s, of order ¢ = (1—a)/a.
Thus if ¢, is the (E, ¢) mean of s,,, and not all s, are 0, then

S <(g+1) Y s

This is equivalent to (11.17.5), with inequality.
(2) If we take x = t, we obtain

8o+81+...F8,\" r \r
Z( 1 <= Z o
More generally, if we take xy = 1—(1—t¢)*, where & > 0, then ¢,, is the
(C, k) mean of s, and

. _ [CA+RTA—1/r))" < ,
S, < { ‘IE(*I‘JF)]GSI/:)/’”)} > s

11.18. Continuous transformations. There are transformations
of functions of a continuous variable analogous to the § transforma-
tions discussed in the preceding sections. We are led to them naturally
as follows. Our regular § transformations of s, were defined by

(11.18.1) Ay = p, Ans,,
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where p,, is a regular moment constant. Suppose now that f(z) is a func-
tion of x regular along the positive real axis, and so expressible in the form

(n)
f@) = Zf (O)x” = a,x"
for small z. Then the natural analogue of (11.18.1) is

(11.18.2) g™(0) = p,f™(0),
in which case

9@) = 3 knana™ = [ 3 anfat)dy = [ flat)dx,

at any rate for small .
We are thus led to consider the transformation

(11.18.3) g(@) = [ flat)dx(t)

(dismissing the considerations which led us to the formula). We shall
suppose that f(x) is continuous in any finite (0, X): we shall be interested
only in the behaviour of f(z) and g(x) when x - co.

If x(t) = 1—(1—t)*, where k > 0, then

1 x
o) = b [ fau—op-rde = % [ @—wp=foodu
[} 0

is the (C,k) mean of f(z) in the sense of §5.14. If x(¢) = 0 for
0<t<a<l, x(t) =1 for a <t <1, then g(xr) = f(ax). This is the
analogue of the Euler transformation; and, unlike the corresponding
transformation of s,, it is trivial, since f(x) >! and g(z) >1 are
equivalent.

We prove one theorem only. We suppose, as we may, that x(0) = 0.

THEOREM 217. In order that the transformation (11.18.3) should be
regular, i.e. that f(x) >1 should imply g(x) 1, it is necessary and
sufficient that x(1) = 1 and x(+0) = x(0) = 0.

If f(x) = 1 for all x, then g(x) = fdx = x(1). Hence x(1) =1is a
necessary condition.

If f(x) = 1 for 0 < « < §, where 8 > 0, and f(x) = 0 for z > §, then

f(x) > 0. Also 5

g(z) = f dx = x(g)-—x(O)-

If the transformation is regular, g(z) - 0, and therefore x(8/x) - x(0),
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It remains to prove the conditions sufficient. Since f = I givesg =1
it is enough to prove that f > 0 implies g — 0. Further, since x is the
difference of two bounded increasing functions continuous at 0, it is
enough to prove this for an increasing x. Then, if we choose X so that
|f| < e for 2 > X, and denote by M(X) the upper bound of |f| for
z < X, we have

lg(z)| < j | fat)] dx < f | f(wt)] dx +-e j dx

Xz

< M(X){x(X/x)— x(0)}+¢ f dy < 2 f dy = 2¢
for sufficiently large z.

There is an inequality for g(z), when y is monotone and f > 0, similar to
(11.17.2), viz.

(11.18.4) Tg”(x)dx < ( fl x-llrdx)' ffr(x)dx.
0 0 0

The proof is similar to that of §11.17, but rather simpler, owing to the triviality
of the Euler transformation. In the particular case ¥ = ¢, the inequality becomes

(1i.18.5) f{ ff(u)du} dz < jf’(:c)dx

11.19. Quasi-Hausdorff transformations. The theory of $
transformations depends upon the properties of the transformation &
of §11.1. There is another transformation of very similar form which
also generates interesting transformations. This is the transformation
8* with matrix
1 1 1
* 0o —1 —2 .o
8% 0 o | I

obtained by exchanging rows and columns in [8].
THEOREM 218. 8* is its own reciprocal: if t = 8%s then s = 8*¢.
One preliminary remark is wanted. The theorem asserts that, if

(11.19.1) ¢, = (—1)m i (:;)s,,

n=m

e R

then s, is expressible similarly in terms of #,. The series in (11.19.1)
and the reciprocal equation are infinite and need not converge. We
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can, however, avoid considerations of convergence in this theorem by
supposing that s, = 0 for n > N, in which case ,, = 0 for m > N; and
Theorem 218 is to be interpreted in this sense.

The proof is similar to the proof of Theorem 196. We have

(11.19.2) w, —(—l)’"Z( )t = (=" 2(_1)n( )i()

— (—l)mpimsp;m(_l)n(m)(n)
-3 (3 )

and the inner sum is 1 if p = m and 0 otherwise, so that u,, = s,

The convergence of the series (11.19.1) does not necessarily imply
that of the reciprocal series. Thus s, = a”, where 0 <a < 1, gives
t,, = (—a)™(1—a)~™-1,and the reciprocal series does not converge unless
@ < %. The double series in (11.19.2) is convergent if

> ()t 3 () = 2, (b)rmiel <o

»=m =m
which is true, for example, when s, = O(a@™) and a < 3.
We now define the transformation ($*, ) by A* = 8*ud*, where p, as
in §11.3, is a diagonal transformation. We find, formally,

3 oS B S e

n=m =m n=m
= (— —1)P—™), = > (P p-m
Y (m)s 31 (n_m)»,, > (m)A Yo
p=m n=m p=m
Thus, replacing p by =, the transformation is defined by
(11.19.3) b= 3 XX .50,

(11.19.4) A%, =0 (n<m), Nhn = ( )A“-m (n = m).

11.20. Regularity of a quasi-Hausdorff transformation. We
have now to consider when the transformation ($*,u) is regular. We
suppose that u, is a moment constant.

Suppose first that u, is totally monotone, so that x increases with ¢.
Then A}, > 0 and

2 An = Z (:,) f tr(1—gn-mdy = f {——l:Tli———ﬁt)},de = f%&;

n n>m
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and (11.5.2) and (11.5.4) will be satisfied if and only if this integral
converges and has the value 1. Condition (11.5.3) is satisfied auto-
matically, since A}, , = 0 when m > n. Thus

(11.20.1) oy = j dt_x —1

is a necessary and sufficient condition for regularity.
In the general case it is plain that

i< [

On the other hand, whenever 3 |A7, | is bounded, the function
¢
X@) = f dx(u)
u
0

(suitably modified at its discontinuities) may be obtained as the limit of
X, (t) = X
=3 Xn

where ¢ tends to infinity through an appropriate sequence g;, and
¢
W) = f jdx(w)|
%
0

is then obtained from [} | as X(¢) is from A7, ,. Hence we obtain

THEOREM 219. If p, is a reqular moment constant corresponding to x,
then the conditions

(11.20.2) fl—dtil <, f%l —1

are necessary and sufficient for the regularity of (H*, p).
11.21. Examples. (1) If x(t) is 0 for 0 <t <a <1 and a for
a < t < 1, then (11.20.1) is plainly satisfied, and
By = an+1’ An-m/"m — am+1(1_,a)n-m.
In this case

t, = amtl Z (:L)(l—a)”—msn

nzm

= amt{ont-(mt (10 + PFOED 1y,

We are thus led to the ‘circle’ method (y,a) of §9.11.
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(2) If x =t, p, = (n+1)-1, then

(:»)M_m” m= (Z») <m+1)((::2%))-!..(n+ ) n-IH'

The transformation is

S, S S,
[ — m m+1 m+2
m m+1+m+2+m+3+ ’

which is plainly not regular. The integral (11.20.1) diverges.
(3) If x = I#+1/(I+1), where I > 0, then
; -
n4-1+4+1’°

(11.20.1) is satisfied, and the transformation is regular. In this case

,un=lft”+zdt=

_ Sm (m+1)8m
(1L2L1) = l{m+z+1+(m+l+1>(mﬁ+2)+
(m-+1)(m+2)s,,,5

+(m+z+1)<m+Z+2)(m+l+3)+’"} '

In particular I = 1 gives

Sm Sm+
(L22) = (Do b ot

It may be shown that the transformations corresponding to different
positive I are all equivalent, and that each is equivalent to (C,1).
There are transformations similarly related to (C, k) for any & > 0.

NOTES ON CHAPTER XI

§§11.1-3. The class of transformations X = 3ud was first studied by Hurwitz
and Silverman, TAMS, 18 (1917), 1-20, who identified it with the class of trans-
formations permutable with H. They were concerned primarily with trans-
formations apT4og HtoyH2 ...,
where I is the identity and f(z) = ¥ o, 2" is an analytic function regular at the
origin, and proved that the transformation is regular if f(z) is regular for
|z—%] < % and f(1) = 1. In particular they proved that the (H,k) and (C,k)
‘transformations are regular transformations A.

Hausdorft [(A), MZ, 9 (1921), 74-109] rediscovered the class A and developed
‘the more complete theory set out here, in which the class is linked with the
‘moment problem for a finite interval’. In particular he proved the fundamental

_Theorem 206. The proofs of this chapter are mostly derived from this paper or
"a later one [Hausdorff (B)] in MZ, 16 (1923), 220-48. An intervening paper in
MZ, 9 (1921), 280-99, deals with generalizations in different directions. There
is a concise account of the theory in Widder, ch. 3.
§11.4. Theorem 200 was proved by Hurwitz and Silverman, Lc. supra.
§§11.6-7. Hausdorff (A). Hausdorff attributes the definition of a totally mono-
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tone sequence to Schur. I have arranged the proof of Theorem 201 in accordance
with suggestions of Dr. Bosanquet.

§11.8. Theorem 203 is a generalization of the familiar theorem that the system
1, 2, 2,... is ‘complete in L0, 1)’.

§11.9. Hausdorff (A, B) gave a number of proofs of Theorem 206. The proof
here is substantially the first in (B), which is also given, in rather different form,

in Widder, 101-4. The arrangement here has been prompted by suggestions of

Dr. Aronszajn and Dr. Bosanquet.

There is a proof of Helly’s theorem in Widder, 28-9.

Hausdorff’s work is closely related to that of S. Bernstein and Widder on totally
monotone functions. We may say that f(z) is totally monotone in (0,c0) if
(—1)2f®)z) > 0 for z > 0: thus e* is totally monotone. It was proved by
Bernstein that a necessary and sufficient condition for f(z) to be totally mono-
tone is that

f@) = [ &=t axle),
0

where y(t) is increasing and bounded. This is easily deducible from Hausdorff’s
theorem, but Bernstein’s work was independent and his methods different. We
can also (though not quite so simply) deduce Hausdorff’s theorem from Bern-
stein’s. For fuller information and references see Widder, ch. 4.

§11.10. The main results of Rogosinski and Fuchs will be found in Rogosinski,
PCPS, 38 (1942), 166-92, and Fuchs, 0QJ, 16 (1945), 64-77. If T and T’ are
regular § methods, then, in order that T’ should include T, it is necessary and
sufficient that T/ = @T, where O is a regular $ method. If T and T are any
$ methods, T’ includes T, and u, # 0 except for a sequence (n;) of n such that
3 n;t < oo, then T/ = @T, where © is a regular $ method. It is not known
whether the condition on (7n;) is the best possible, but Fuchs, PCPS, 40 (1944),
189-98, has shown that the theorem stated for regular methods is not true for
all methods without reservation.

Hille and Tamarkin, PNAS, 19 (1933), 573-7, state a considerable number of
more special theorems concerning inclusion.

§11.11. The equivalence of (H,k) and (C,k), for general &k > —1, was first
proved by Hausdorff (A), 88-90.

There is an accurate discussion of the inversion formulae referred to at the
end of the section in Burkill, PLMS (2), 25 (1926), 513-24, and Widder, ch. 2.
We may be content to calculate p{¥ and o formally and verify the results
independently. This is easy for integral k, but rather more troublesome for
general k.

§11.12. For (11.12.3) see Titchmarsh, Fourier integrals, 30-1, or Widder,
338—41.

There is a full account of the Laguerre polynomials in Szegd, Orthogonal
polynomials (New York, 1939), chs. 5 and 8.

§§11.13-14. There is a fuller account of these logarithmic and exponential
forms of p,, in Hausdorff (A).

§11.15. See Hausdorff (B), 227-31. Hausdorff’s point of view is rather
different.

For the expansion of P,(2w—1) in powers of w (‘Murphy’s formula’) see
Hobson, Spherical and ellipsoidal harmonics (Cambridge, 1931), 22, or Whittaker
and Watson, 311-12,
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The inverse of the last formula of the section is

may + m(m—1)a,
P = et T o T G D F 2 F9)

§11.16. There are fuller discussions of Theorem 215 and related theorems in
Hausdorff (B), 233—40, and Widder, 109-13. For ‘weak convergence’ (an idea
due to F. Riesz) see Littlewood, 45-9.

§11.17. Hardy, JLMS, 18 (1943), 46-50. Hardy proves there that H(r) is the
best possible constant.

There is a full discussion of the Lebesgue-Stieltjes integral in Saks, Theory
of the integral (ed. 2, Warsaw, 1937), ch. 3. The properties used in this section
are stated in Inequalities, 162-7. The form of Minkowski’s inequality required
is Theorem 201 of Inequalities (p. 148), restated for Stieltjes integrals in accor-
dance with pp. 155-6.

§11.18. For the general theory of continuous Hausdorff transformations see
Rogosinski, PCPS, 38 (1942), 344-63, and Fuchs and Rogosinski, 0QJ, 14
(1943), 27-48.

For (11.18.4) we must use Theorem 202 of Inequalities (again restated for
Stieltjes integrals). -

§11.20. The integral _[t-l dx must again be regarded either as a Lebesgue-
Stieltjes integral or as the limit of an integral over (e, 1). We require the theorem

that
S [an@ dx = [{Z an(@)} dx

whenever y is an increasing function, a,(z) > 0, and either side is finite. This
is a very special case of a theorem stated by Widder, 26, and proved by Saks
(L.c. under §11.17, 76-80). Here a,(x) is continuous for each =, and 3} a,(x) is
uniformly convergent in any interval (e, 1), and it is easy to prove what is wanted
on the basis of the more elementary definition.

§11.21. Hardy, PCPS, 20(1921), 3047, proved that the transformation (11.21.2)
is equivalent to (C, 1), but this theorem is practically a special case of one proved
earlier by Knopp. For generalizations see the papers of Hardy and Littlewood
and of Knopp cited under §6.7.

+



XII
WIENER’S TAUBERIAN THEOREMS

12.1. Introduction. In this chapter we return to the ‘Tauberian’
theorems whose general character we explained in §7.1. We have
already proved a considerable number of such theorems, for example,
in §§6.1-3, in Ch. VII (which was entirely occupied with them), in
§89.6-7, and in §9.13; but our methods of proof have varied, and the
different methods which we have used may seem at first sight to have
little connexion with one another. Here we give an account of a general
theory, due in the main to Wiener, which enables us to present most
of these special theorems as parts of a systematic whole.

We begin by restating Theorem 92, viz.

(A4) if s, > s(A) and s, = O(1), then s, - s (C, 1).

This is a typical Tauberian theorem which provides a suitable opening
for our introductory remarks, but it is more convenient to use the
integral analogue. The first hypothesis of (4) may be stated in any -
of the equivalent forms

1
z a,n'rn - 8, (1'—‘?') z Sn’rn —> 8, Yy z sne—’nV -8, :E Z Sp e—nlz _y s,

where 7 > 1, y > 0, £ >0; and the conclusion is

1
p 8y > 8.

The integral analogue is nes
(B) if
(12.1.1) ife-‘”l”(t)dt—al
and F(t) = O(1), then .
(12.1.2) %f F(t)dt -1,
(1]

and it is this theorem which we take as our text.

It may be well to interpolate two remarks whose substance is all but obvious
after Ch. VII: see in particular § 7.1.

(i) Theorem (B) is the ‘corrected converse’ of the ‘Abelian’ theorem

(B’) (12.1.2) implies (12.1.1),
without any additional hypothesis on F(¢). This theorem is simple: for if, as we
may, we take I = 0, then

i
Ft) = j F(u)du = olt)
0
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implies Je—‘/@F(t)dt = é J. e~tZF, (¢)dt = o(i J. etz dt) = o(x).

(ii) Theorem (A) is a trivial corollary of Theorem (B). For, if we assume (B),
and take F'(t) = s, forn € t < n+1, then
ntl
1

5,{ bR (t)dt = % Z 8, f etrdt = (1—eU%) ¥ 5, 67",

n

so that the first hypotheses of (4) and (B) are equivalent. Since the second
hypotheses and the conclusions are obviously equivalent, (4) follows from (B).
The argument is much the same as one used in § 7.2.

The first hypothesis and the conclusion of (B) are each of the form

(12.1.3) Py(F) : 2 J' G(;)F(t) dt 1 f G(t) dt.
In the hypothesis
Q@) = G,(t) = e, f 6,(t)dt = 1,
and in the conclusion
Gl)=Gyt) =1 (0<t<1), 0 (t>1), sz(t)dt =1.
Thus (B) may be stated in the form
(12.1.4) Py (F) . F(t) = O(1) — Py (F);
and it seems likely that any theorem of this form will have important

Tauberian consequences.
If we make the transformations

t=e¢, ax=¢e, Fl)=f(r), eQe)=g(—),
then

0

%fG({%)F(t) dt = f eG(emt) F(e) dr = fg(f—-‘r)f (r) dr,
.0 —

—o0

j? G@i)dt = j." g(—7)dr = j? g(7) dr.

Thus, replacing £ and = by z and ¢, (12.1.3) becomes
(12.1.5) P(f): f gla—t)f@t)dt - 1 j g(t) dt,

where the range is now (—o0,00); and (12.1.4) becomes

(12.1.6) B(f) - f&) = 0(1) = B, (),

with appropriate g, and g,.7 We are thus led to ask for general condi-
tions on ¢, and g, under which (12.1.6), or a similar theorem with some

1 Actually with
Cgy(t) = eteme gt)=¢t (>0, 0 (t<O0).
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alternative condition on f, may be true. Wiener’s fundamental dis-
covery is that there is a special condition on g,, which we shall call
W(g,), and whose form we shall consider in a moment, which almost
enables us to dispense with conditions on g,. His ‘key theorem’, in any
of its forms, is a theorem of the type

(12.1.7) W(g) - B (f) - B(f) = E,(f),

where E(f) is a ‘Tauberian’ condition on f, and the conclusion is true,
not for a special g,, or for g, restricted like g,, but for ‘all reasonable’ g,.
It is no longer in general true that

Pgy(f)— Pgi(f),

so that the propositions contained in (12.1.7) for different choices of
91, 95 are not all corrected converses of Abelian theorems, though they
are still ‘Tauberian’ in a wider sense. We have already met a result
of this character in Theorem 147.

12.2. Wiener’s condition. The form of W(g,) is suggested by the
theory of Fourier transforms of functions of the class L(—o0,00).1
It is plain that P,(f) implies F,(f) when

WO = 3 raglt—a,),

and this suggests that the inference may be extended, with proper
precautions, to A(f) of the form

(12.2.1) h(t) = 7(;7) f r(w)g(t—u) du.t

We are thus led to ask whether, given a g of L, an arbitrary & of L can
be expressed in the form (12.2.1), with a kernel r also of L.
We define the Fourier transform of a function 7(f) of L(—00,0) by

(12.2.2) R(t) = «/T;;) f r()e™® du

(and similarly with other letters for r and R). It is familiar§ that, if
g and r are L, and A is defined by (12.2.1), then k& is also L, and
H(t) = R(t)Q(t). Thus if g and & are given, and we wish to express A in
the form (12.2.1), we are led to define R(t) by

H()

(12.2.3) RBt) = G

t Not by Plancherel’s more symmetrical theory for functions of L*(— oo, ).

1 Here, and to §12.7 inclusive, the limits, when not shown, are — oo and oo.

§ We state the theorems about Fourier transforms which we need more formally in
§12.3.
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and r(¢), in some sense, by the reciprocal Fourier formula

(12.2.4) r(t) = j R(t)e-t du.

L
J(2m)
It seems essential, if this solution is to be successful, that

(12.2.5) at) = 7(;—"5 f g(u)e® du £ 0,

i.e. that the Fourier transform of g(f) must not vanish.

We define W as the class of functions which (i) belong to L(—c0,00)
and (ii) whose Fourier transforms do not vanish for any ¢, and we
suppose that g, belongs to W. We shall then find (a) that any & of L
can be expressed in the form (12.2.1), with an 7 of L, and (b) that F,(f)
implies P,(f) for any bounded f. That the class W should intervene
is, as we have seen, quite natural. What is surprising is that so simple
a hypothesis as ‘g is W’ should be sufficient for so general a conclusion:
one might naturally expect any theorem of this kind to be encumbered
with more complex conditions on g, particularly in regard to the
behaviour of @ at infinity. (But see Corrigenda, p. 386.)

Our main object now is to prove Wiener’s ‘key theorem’ in the form

THEOREM 220. If (i) g is W, (ii) kis L, and (iii) f is bounded, then FP)(f)
implies By(f), i.e.

(12.2.6) J’ gla—b)f(t) dt > 1 f g(t) dt
tmplies
(12.2.7) f h(x—1t)f(t) dt > 1 f h(t) d.

We shall deduce Theorem 220 from a theorem of Pitt, viz.

THEOREM 221. If (i) g ts W, (ii) f ¢s bounded and slowly oscillating, or
real, bounded, and slowly decreasing, and (iii) B,(f), t.e. (12.2.6), is true,
then f(x) — | when x — o0,

Here we use the terms ‘slowly oscillating’ and ‘slowly decreasing’,
not as they were used in § 6.2, but in the alternative sense, appropriate
to the interval (—o0,00), referred to in the note on § 6.2: the connexion
between the two senses will become clear in §12.8. We say now that
Sf(z) is ‘slowly oscillating’ if
(12.2.8) fy)—f(x)—>0
when
(12.2.9) y >z, Z —> 00, y—x —> 0,
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and ‘slowly decreasing’ if it is real and

(12.2.10) lim{f(y)—f(x)} = 0

under the same conditions. Thus f(x) is slowly oscillating if f'(x) = O(1),
and slowly decreasing if f'(x) > —H. It will plainly be sufficient to
prove Theorem 221 for real and slowly decreasing f.

12.3. Lemmas concerning Fourier transforms. We shall use the
following theorems concerning Fourier transforms of functions of L:
the proofs of the first three will be found in any of the books on the
subject. We write ‘G ~ g’ for ‘@ is the transform of g’.

THEOREM 222. If gis L,and G ~ g, then G is continuous and bounded.
TreorEM 223. Ifgis L and G ~ g, then

g(t) = \/(%") f G(w)e-"du (C,1),

U
. N 1 'ul —itu
1.€e. g(t) —[}'l_i-; m ‘£ (1 ——U——)G(u)e Cl d’u,

for almost all t. In particular, if G is null, then g 1s null.

Actually we need this inversion formula only for the sake of the
corollary in the last sentence.

THEOREM 224. If g and r are L, then

ht) = W;T) f r(w)g(t—w) du

t8 L, and H(t) = R(t)G(t).
TaEOREM 225. If P~ p, @ ~ g, then
(12.3.1) P(t—c) ~ e~p(t),
e .
(12.3.2) P(—c)Q(t) ~ m fp(t—u)q(u)ew‘“ du,
and
(12.3.3)

P(—o){Q@)—Qe); ~ «/T;m") J {p(t—w)—p(t)}g(u)e™™ du.

Of the last three formulae, (12.3.1) is obvious, and (12.3.2) follows
from (12.3.1) and Theorem 224. As regards (12.3.3), we have

P(t—0)Q(e) = %%};—) f g(ueios du ~ ﬁ f P(t)g(w)ec®— du.

by (12.3.1), and (12.3.3) follows from this and (12.3.2).
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12.4. Lemmas concerning the class U. We denote the class of
transforms of functions of L by U; and if

1 u ]
Gi) = N fg(u)e“ du,
where g is L, then we write
1
U(@) = —— .
©) = 753 f lg(w)] dus

Plainly |Q(t)| < U(Q) for all real ¢.
THEOREM 226. If G, and G, are U, then Gy+ Gyand Gy Gy are U, and
UG+Gy) < UG)+UG), UGGy < U(G)U(G,).
This is obvious for G, +@,. As regards G, G,, it is the transform of

1
MO = Tz | - weatw) du
by Theorem 224; and

UG, Gy) = ;/(—]‘2—”-) [ o< o [ e [ loe—wllgsu) au

=L 1) du—2— [ Igst—u)| du = U@)U(@).
D) Jem

Taeorem 227. If G, and G, are U, and U(G,) =d <1, then
H = G,/(14+@,) is U, and
U(&)

v <22

Since |G| < U(Gy) = d < 1
say, and H, is U, by Theorem 226. If H, is the transform of 4, then

N 1 N .

g(—l) H, = :/(—Zﬂf;(—l) b (w)e du.
Now U(H)= s [ ot au < D@V = UG,
by Theorem 226, and

) | g (—1)yh,

when M and N tend to infinity. It follows (by the theory of ‘strong
convergence’ of functions of L) that there is an % of L such that

N
h— > (=1)h,
0

N N
< < n
du < % UH,) < U(Gl)gd -0

du — 0,

e )
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and that {1/,/(2m)} f hei® du is

N . N G,
lim —— —1)» e — 1 1)\ n __ 1 _-H.
o J(Qw)f .,E (—1)"h,, e* du_}rlm Eo (—1)"G,G} = 16, H
Thus H is U. Finally,
n _ U(Gy)
UH) = J( )”z <U@G)Zdn = 2%

Our last lemma concerns special functions which will be important
in the proof of Theorem 221. We define p(t) by

pt) =1t (¢ <1), 0 (¢ >1).
Then

2\1—cos? 1 (sin i-t)z

1
1
P(t>=m_jl(l~lul)emd“=a/(;) & e

Both p(t) and P(t) are L, and they are transforms of one another, so
that each is U. We shall also write
2\sinZ\¢

241 boO=s(g)  Bo=2ren = [BTE

for every positive A. Then K, and k) are transforms of one another and
both functions are U.

THEOREM 228. If q.(t) is defined by
(12.4.2) ¢ ) =1 (|| < o), '“ (e <1t < 20, 0 (8] > 2e),

then the transform of q.(t) is
(12.4.3) Qut) = J(%)w
W et

l
Also T | lemna<s
(so that g, is U), and
[ 1efe—y)—@ut) >0

when y is fixed and € - 0.

Here ¢.(f) is the ‘trapezoidal’ functlon indicated in Fig. 3, and
q.(t) = 2k (t)—K;e(t), from which (12.4.3) follows immediately. Next,

1 1 1—cos 2¢t 1—coset
T | 1001 < Y[ = art [=ieda)
— § J‘ l1—cosu d -3

T u?
4780 U
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Finally, if C(t) = J(%)M

T 2

then @ (t) = eC(et), Cis L, and
[ 10— —Q.)] dt = ¢ [ |Clet—ey)—Clet)| dt = [ | Olu—ey)—C(u)]| s,

which tends to 0 with e.

2-€0 € 2 -2\ -2A+3¢ 2A
Fia. 3. Fi1a. 4.

12.5. Final lemmas. Our last two lemmas (the first of which is a
theorem of importance in itself) contain the kernel of the proofs of
Theorems 221 and 220.

THEOREM 229. If g is W, h is L, and H(t) = O for |t| > 2A, then
H(t)/G(t) 2s U. In particular this is true when H(t) = ky(t).

That is to say, if @ and H are transforms of functions of L, @ does
not vanish for any ¢, and H vanishes for all ¢ outside a finite interval,
then H/@ is the transform of a function of L.

We divide (—2A, 21) into N equal intervals by the points

o= —2), = —2+3e, .. t,=—22+3ne, .. ty=2
¢ being chosen so that 3Ne = 4A. Then

N

for |t] < 2A (as is apparent from Fig. 4, in which the vertical lines are
at equal distances €¢). Thus

(12.5.1) Z q€(t_t")H i a(0),

say, for [¢| < 2A. Since G(t) 7 0, and H(t) = O for |¢| > 2, this equa-
- tion holds for all ¢, and it is sufficient, after Theorem 226, to prove that
Xn 18 U for each n. We shall prove that this is so for sufficiently small e.
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We have Q(t) = G(t,)+{G(t)— C(t,) s t—1,)
if |t—t,| < 2¢, since then g, ((—t,) = 1; and

Qe(t_tn)H(t) =0
if |t—t,| > 2¢. Hence
QG(t_tn)H(t) — Gl GZ
G(tn)“"{G(t)“ G(tn)}Q%(t’_tn) 1 + Ga ’

Xn(t) =
where

G,(t) = qe(t( n)n) Gy(t) = H@E),  Gyt) = C%g)(—t"—)qzs(t—tn)-

Here G,, G,, and G; are U, by Theorems 226 and 228; and it is suffi-
cient, after Theorem 227, to prove that

U[{G(t) G(tn)}Qk(t n)] <1

12.5.2 U(G,
(1252)  UG) = o

for sufficiently small e.

Now y(t) = {G(t)—G(tn)}q2e(t

is the Fourier transform of

:/(;_ﬂ) f {Qae(t—u)— Qo (t) g (w)e? 0 du,
by Theorem 225 (12.3.3). Hence
U(}’) = _21;; f dt l f {Q2e(t“u)—Qze(t)}g(u)eﬂ”(u_” du

<3 f dat f | Qalt—1)— @uc(t) 19(u)| du

=5 [ 1o du [ 1Qut—u)—@uio .

The inner integral here is bounded, and tends to 0, for any fixed «,
when e - 0, while g is L. It follows that U(y) > 0 when ¢ — 0. Also

'|G(t)| has a positive lower bound g in (—2A, 21), since G(¢) is continuous
and does not vanish, and so U(G;) < p1U(y) > 0. It follows that
(12.5.2) is true for sufficiently small ¢, and this completes the proof of
the theorem.

THEOREM 230. If
1 1 [ sin®?A(x—¥) N
(12.5.3) 7@ f Ky(x—1)f(t) dt = - Wf(t) dt > 1,

for every positive A, or for some arbitrarily large A, when x — 00, and f(t) es
bounded and slowly oscillating, or real, bounded, and slowly decreasing,
then f(x) - L.
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We may suppose f(f) real and slowly decreasing, and [ = 0. If
f(x) #> 0, then there is a positive 8 such that one of f(x) >3 and
f(x) < —38 is true for arbitrarily large x: let us take, for example, the
first hypothesis. Then, since im{f(y)—f(x)} > 0 if z >0, y > 2, and
y—=x — 0, there are an z, = z,(3), as large as we please, and an n = 7(3),

such that fO =P (@<z<t<otin)
If { = x+m, and M is the upper bound of | f|, then

smz)\(f ] s1n2)« (1) sin2A(¢ —1)
L Seeot=g, f A ([} f) e

_ 9 sm2)\u 2M J‘ smz)«u

) Mt )\u2
(1]

The first integral here tends to im, the second to 0, when A ->oc0. Hence
sin }\(f —t)
t) dt S
for sufficiently large A and arbitrarily large £, and
=1 [ sin®A(x—t)
il—lfo - Alx—t)?
in contradiction to (12.5.3). We can prove similarly that the hypothesis
f(z) < —8& leads to a contradiction, and the theorem follows.

It is essential that the hypothesis (12.5.3) should be satisfied for arbitrarily
large A. The Fourier transform k,(¢) of K,(t) vanishes for [¢| > 2A, so that

f Ky(z—t)eictdt = 0

for ¢ > 2X. Thus (12.5.3) is true (with I = 0) when f(¢) = ¢t and ¢ > 2A; and
[ is slowly oscillating but does not tend to 0.

f(¢)dt > 0,

12.6. Proof of Theorems 221 and 220. It is now easy to prove
Theorem 221. We may suppose f(¢) real and slowly decreasing, and [ = 0.
By Theorem 229, k,/G is U, i.e.

where r) is L. Hence, by Theorem 224,
k(@) J‘
k() = 2LG(t) t—u)ry(u) du
and, by Theorem 223, for almost all z,

K)\.(x) = ;/_(;TT—) f g(x—u)ry(u) du.



12.6] WIENER’S TAUBERIAN THEOREMS 293

Hence

p@) = f Kyz—0f () di = \7(;—") f ) de f ga—t—ury(u) du

- \/(_;”_) f (1) du f gla—t—u)f(2) dt,

the inversion being justified by Fubini’s theorem. The inner integral
here is bounded (since ¢ is L and f is bounded), and tends to 0 (by
hypothesis), for each u, when x - c0; and ) is L. Hence p(x) > 0 for
every A, and f(z) - 0, by Theorem 230.

It is also easy to deduce Theorem 220: we may suppose | = 0. We
are given that g is W, that & is L, and that f is bounded. If

m(z) = f h(x—1t)f() dt,
then plainly m is bounded. Also

m(y)—m(z) = [ {(hly—t)—he—1}10) di,
Im(y)—m()| < M [ [Wly—t)—h(e—0)|dt = M [ |hy—z—u)—h(—u)|du,

where M is again the upper bound of | f|. It follows that m(y) —m(x) — 0
when  — 0, y—x — 0, i.e. that m(z) is slowly oscillating.
Also

f g(z—t)ym(t) dt
= f g(z—t) dt f h(t—u)f(u) du = f f(u) du f g@—t)h(t—u) dt

= f flu) du f g(z—u—w)h(w) dw = f h(w) dw f fu)g@—u—w) du

(the inversions being again justified by Fubini’s theorem). The inner
integral is bounded, since g is L and f is bounded; and, by hypothesis,
it tends to 0, for each w, when x —oc0. Also his L. Hence

f gx—t)m(t) dt - 0.

But m(x) is bounded and slowly oscillating, and, therefore, by Theorem
221, m(x) - 0, which is (12.2.7).

We have deduced Theorem 220 from Theorem 221. It is also easy to deduce
Theorem 221 from Theorem 220, but it will be more convenient to prove this in
§12.8, when we have put the theorems in forms appropriate to the interval
(0, ).
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The condition that G(t) % 0 is in a sense a mecessary condition in both
theorems. If G(c) = 0, H(c) # 0, and f(f) = e, then

f glo—1)f(t) dt = j glu)f(x—u) du = e~ic® f glu)eict du = 0
for every z, but Ih(:z:—t)f(t) dt = e~i*H(c)

does not tend to 0. Thus the condition is necessary in Theorem 220. Since e~
is also slowly oscillating, the same choice of g and f shows that the condition is
necessary in Theorem 221.

12.7. Wiener’s second theorem. There is a second theorem of
Wiener, concerning Stieltjes integrals, which is also deducible from
Theorem 221. We shall make less use of this theorem than of Theorem
220, but it is important theoretically because it can be applied directly
to infinite series. We must begin by defining a new class of functions
included in and narrower than L.

We shall say that g(¢) is M if it is continuous, and

(12.7.1) > max |g(t)] <o

n<i<n+1
(the sum running from —oo to c0). It is plain that any g of M is L,
and that (12.7.1) is equivalent to

(12.7.2) > max 1g(t)] < o0
an+b<i<a(n+1)+b

for any fixed a (not 0) and b. If g is M, and its transform G does not
vanish for any t, then we say that g is W*: W* is a subclass of W.

Finally, we consider Stieltjes integrals of the type f &(¢) do(t), where
a(t) is of bounded variation in any finite interval of ¢, and

t+1
(12.7.3) f idou)| < H.
) ¢
TrEOREM 231. If (i) ¢ s W*, (ii) b is M, (iii) « satisfies (12.7.3), and
(12.7.4) f glz—t) da(t) - 1 j g(t)dt,
then
(12.7.5) f Bz —t) da(t) — | j h(t) dt.

We suppose again that ! = 0, and now write

m(x) = f h(z—t) dot).

Since
n+1

[ z—0lida®)] = [ 1) |ldaz—w)] = 3 [ hw)ldalz—w)]

n+1l

<> max Ih(u)lf |da(x—u)| < HY max |h(u),

n<usn+1 n<usn+1
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m(x) is bounded. Next,

miy)—m(@) = [ {ly—1)—he—1)}dalt) = [ {ly—z-+1)—h(0)} da(z—1),
n+1

m(y)—m@)| < 3 [ hly—z-+0)—h()]|defz—1)]

<HZ max |hy—z+t)—h)l.

n<i<nt1l
The last series converges uniformly for |y—x| < 1, since

> max |h(t47)]
n<i<n+1
converges uniformly for |r| < 1; and each term tends to 0 when x — o0,
y > x, and y—=z — 0, since A(t) is continuous. Hence m(y)—m(x) > 0
under these conditions, and m(z) is slowly oscillating. Finally,

f glz—tym(t) dt = f glz—t)dt f h(t—u) do(u) = f do(u) f glz—t)h(t—u)dt,
the inversion being justified by the convergence of

[ lg@—0)1dt [ 1h(t—u)||dew)];
and this is

jda(u) f g(x—u—w)h(w)dw = J.h(w) dw f g(x—u—w) da(u).

The inner integral is bounded and tends to 0, for each w, when z — c0;
and % is M and a fortiort L; so that

f g(x—tym(t)dt - 0.

It now follows from Theorem 221 (as in the proof of Theorem 220) that
m(x) - 0.

Theorem 231 has the advantage mentioned at the beginning of this
section, but we shall use it comparatively little. It will usually be more
convenient to bring our problems, by some preliminary transformation,
into a form adapted for the application of Theorem 220 or Theorem 221.

12.8. Theorems for the interval (0,0). We now modify our
fundamental theorems by an exponential transformation. They then
become theorems concerning functions defined over (0,00), and it is in
this form that they are usually most convenient for application.

We put, for a moment,}

e=¢, d=1, f(t)= F(¢) = F(r), g(—t) = eQ(e) = 7G(7),

t Abandoning the use of capital letters for Fourier transforms.
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sothat  [g@)d,  [glz—nf)dt, [ ate=ar

—0o

J 1( [ F oroic g
become ! UL of G(E)F(T)df, of G(r)r=dr.

We then replace ¢, =, F, and @ by z, ¢, f, and g, and the result is as
follows. The class of functions g of L(—c0,00) becomes the class L(0,00).
The class W becomes the subclass of L(0,00) for which

(12.8.1) fg(t)t‘*‘dt #0
1]

for any real z: we still call this class W. The class of slowly oscillating
(decreasing) functions f becomes the class which is slowly oscillating
(decreasing) in the sense of § 6.2, i.e. the class such that

Lm{f(y)—f(@)} =0  [lim{f(y)—f(x)} > 0]
when z —> 00, y >z, ylr— 1.
Thus Theorems 220 and 221 become
TurorEM 232. If g is W, h s L, f is bounded, and

(12.8.2) ;lc f g(é)f(t)dt—n f g(0) dt,
then
(12.8.3) i. f h(é)f(t)dt—ﬂ f h(t) dt.

THEOREM 233. If g is W, f is bounded and slowly oscillating, or real,
bounded, and slowly decreasing, in the sense of §6.2, and (12.8.2) is true,
then f(x) - 1.

Here the limits are 0 and co. Generally, when integrals are written
without limits, the limits will be —oco and oo if the integral involves
xz—t or ¢**, 0 and oo if it involves ¢/x or t—%=.

To obtain the analogue of Theorem 231, we put

f eda(t) = A(e),

and then replace A by «, when (12.7.3) becomes
et

(12.8.4) f L"l"‘—g‘ﬁ <H.
t
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The class M becomes the class of continuous G for which
> max [tG(t)] < co.
ersi<er !
Hence, using M in this sense and W* in the corresponding sense, we
obtain

THEOREM 234. If (i) g is W*, (ii) h is M, (iii)  satisfies (12.8.4), and

(12.8.5) 915 J g(:_c)da(t)—»z J g(t) dt,
then :
(12.8.6) 7_10 f h(-;;)da(t)»l f h(t) dt.

Finally, we observe that if
g=¢1  t=11 fO)=F(), 9(t) =G),
then

f g(t) dt — f Grdr, f g(—:;) £(t) dt _—_é G(%)F(T)df,

and that the classes of functions occurring in the theorems are un-
changed. Hence

THEOREM 235. The results of Theorems 232 and 233 remain true when
x tends to 0 instead of to o in hypotheses and conclusion.

We can now see how (as was stated in § 12.6) Theorem 221 may be
deduced from Theorem 220. It is the same thing to deduce Theorem 233
from Theorem 232. Iff(f)isbounded, and we take h(t) = 1 for 0 <t < 1,
h(t) = 0 for t > 1, then it follows from Theorem 232 that

(12.8.7) }6 J Ft)dt 1.
0

If also f(t) is slowly decreasing, then it follows from the integral
analogue of Theorem 68 of § 6.2 that f(x) — .

12.9. Some special kernels. The following special choices of g(t)
are particularly important: the first is for (—o0,00), the rest for (0,0).

(1) git)=e (c>0): f g(t)e=tdt = J (Z_(:) e—2'le £ 0.

(2) gty =e* f g(t)t—=dt = D(1—iz) # 0.

@) g=10<t<1), 0¢>1): [gor=d= l—lix £ 0.
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(4) gt) =k(1—ty1 (0<t<1), O (t>1); k>0:

[(k+1)T(1—iz)

1
[gtey-i=as =k f (1=~ dt = =T o

# 0.

sint

(8) g@t) = (—) f gtit—dt = 12 (—1—ix)sinh 7z £ 0.

sint

6) g@t)= —(———) f g(t)t—* dt = 1221 +%T(—2—sz)cosh dmx £ 0.1

(™) 00 = 5(r55)
then
f g(tyt-i=+ddt = (iz—3) f 0 (i —8)T'(1—iz+8)Z(1 —iz+8)
for 8 > 0, x s~ 0; and so, mak1ng8—>0
f gty dt = ixl'(1—iz)l(1—ix)

for z # 0. If x = 0 then the value is —1. Thus the assertion that g(¢)
is W is equivalent to the theorem that {(1—ix) 7 0.
(8) Finally, we suppose g,(¢) = [¢~!] and
g(t) = 2g(t)—ago(at)—bgo(bt),
where a and b are positive and log a/log b is irrational. The kernel g,(t)
is not L, since tg,(¢) - 1 when ¢ — 0, but

9t) = s ———¢ +0(1) = 0(1)
for small ¢, and g(¢) = 0 for large t, so that g(t) is L. If Rs > 0 then
yols) = [ goyedt = [ )0t = [[ulu=s—2du

—8-1__9-8— —8-1__§-s— §(1+8)
gy gy - K,

s+1
y(s) = f gl dt = (2—a- )4(1 :-:)

This equation has been proved for Rs > 0, but both sides are regular
for Rs > —1, so that it holds for all such s, and in particular for
s = —ix, where x is real. Finally, y(0) = loga-+logb # 0, and

y(—iz) = (Z_Eixloga_eia:logb) C(ll:::’) #£ 0

t In (5) and (6) we must take the limiting values = and —1 when z = 0.
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when z +# 0, because loga/logb is irrational and {(1—iz) # 0. Thus
g(t)is W.

It will be seen that, in the last two examples, the assertion that g(t)
is W is equivalent to the theorem that {(s) does not vanish on the line
o = Rs = 1. This naturally suggests that the corresponding cases of
our theorems will prove important in the theory of the distribution of
primes.

The functions (1)—(7) are plainly all L, and so (1)—(8) are all W. It is
also plain that the function (1) is M. Finally, if g is continuous, and
O(¢t-1-3), where § > 0, for large #, then

-1

> max ltg(t | <Hze” < o0,
—0 engigent

§ max ltg(t)] < HEe"s” < 0.
0 er<igert

Hence the functions (1), (2), and (5)~(7) are M, while (4) is M if & > 1,

but not if £ < 1, since then it is discontinuous.

12.10. Application of the general theorems to some special
kernels. We now apply our theorems to some of the kernels of §12.9.

(1) If
9) = e, hH) =k(1—t): (0<t<1), AH=0 (¢>1),
and k > 0, then Theorem 232 gives

ylcj ef@ydt > 1 . f(t) = O(1) — £ f (@ —ty1f(t) dt > 1,

ie. fe)y>1 (A) . fit) = OQ1) — f(t) > 1 (C, k).

The special case k£ = 1 is Theorem 92a. We saw in Ch. VII how we
could deduce all the theorems of §7.5 from Theorem 92, of which
some are direct generalizations, and this leads us to ask whether
there are corresponding extensions of Wiener’s general theorems. In
particular, is it possible (at the price, no doubt, of further restrictions
on g) to replace the condition that f(¢) is bounded by a one-sided condi-
tion f(t) > —H ? We come back to this question in §12.12.

If we take g = k(1—¢)*-! and b = «(1—t)*-1, where 0 < « < k, for
t<l,and g =k = 0 for ¢ >> 1, we obtain

ft) > 1 (C,k) . ft) = O(1) = f(t) > 1 (C,«).
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If « > k, the inference is Abelian and no secondary condition on f is
wanted. It is easy to deduce that

fl@) = 0(1) (Cky) . fl®) >1 (C,ky) = f(z) >1 (C, k)
for —1 < ky < k < ky: this is the form assumed by Theorem 70 for
functions of a continuous variable.

(2) If we take g(f) = e~ in Theorem 233, we find that if f(t) > (A),
and f is bounded and slowly decreasing, then f — 1. This is an imperfect
theorem (though in no way a trivial one), since, after Theorem 105, the
condition of boundedness is unnecessary. This leads us to ask whether
(again probably at the expense of some restriction of g) it may be’
possible to get rid of the condition of boundedness in Theorem 233.

It is worth while to consider in this connexion why a condition of
boundedness is unnecessary in Theorem 106 a. We obtained this theorem
in Ch. VII as the climax of a rather intricate chain of reasoning, and
we consider here only the simplest case, in which f’(t) = O(t~!). Then
the simple argument of § 7.2 proves

f=0Q1) 4) . f =01 - f=0();
and so ‘f bounded’ appears at once as a rather trivial consequence of
the other hypotheses.

We cannot expect to answer the question so easily for a general g
and a less heavily restricted f: but in § 12.13 we shall prove a theorem,
due substantially to Vijayaraghavan, which answers it under fairly
general conditions.

(3) If we suppose k > 1, and take

g=¢% h=kQA—tf? (t<1), k=0 (=1,

in Theorem 234, we obtain
et T
1( ote |de)| k i
5‘[‘6 e daft) > 1 . f__u—— <H- Ff(x—t)k Lda(t) > 1.
t 0

We cannot take k£ — 1 because then &, being discontinuous, is not M.
If now off) = s;48-+...+8, for n <t < n4-1 we obtain

el
s, 1 (A) Z’fi—' < H - s, >1 (C,k)
i

for k£ > 1. The second hypothesis is satisfied, in particular, if s, is
bounded. We are thus led directly to a theorem about series, a little
more general than Theorem 92 in one way, but weaker in that it asserts
summability for &£ > 1 instead of for k = 1. We can prove summability
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(C, 1), or summability (C,%) for any positive k, when s, is bounded,
by combining the theorem with Theorem 70. In this case there is no
particular advantage in using Theorem 234 instead of Theorem 232 ; but
for other g the passage from integrals to series may be less immediate.

(4) It is natural, after §4.17 (where we were concerned with the
similar definitions for series), to express the hypotheses

2 [ sin’yt N sin yf\? 1
(12.10.1) ﬂyf fd 1, (12.10.2) f( = )f(t)dt—> ,

12
when y - 0, by

FO>1 Ry, [fl)de =1 (R,2)
respectively. If we choose g(t) as in § 12.9(5), we obtain

f@) > (Ry) . f(t) = O(1) — f(t) >1 (C,k)
forany k > 0. The reverse implication, with R, and (C, k) interchanged,
is also valid: the R, and (C, k) methods are equivalent for bounded f
We shall see in §12.12 that, when & = 1, the condition of boundedness
may be replaced by the one-sided condition f > —H.
Theorem 233 gives

T>1 (Ry) . fis bounded and slowly decreasing — f=>U:

this also follows by combining what we have just proved with Theorem
68a (§6.2). We shall see in §12.14 that the condition of boundedness
may be dropped.

Theorem 234 gives

(12.10.3) 8,>8 (Ry) . 8, =0(1) > s, > s (C,k)

for £ > 1. We may get rid of the restriction k¥ > 1, as under (3), by
use of Theorem 70. ‘

It will be observed that in none of these cases is the full truth
revealed immediately by one of the ‘key theorems’: a supplementary
argument, depending on intrinsically simpler theorems, is necessary in
each case. And all the results may be proved by other methods. Thus
Szész, using Theorem 94, but without appealing to any of Wiener’s
theorems, proved that

limizb—”sinza}no —1.mby>—H - lim:> nb, =1,
8—0 770 n x>0 T n<z
and Hardy and Rogosinski afterwards proved this and the reverse
implication still more simply. If we replace 8 by 2y and nb, by s,, we

obtain (12.10.3), with the one-sided generalization.
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Again, we shall see in Appendix III that summability (R,) implies
summability (A), without any reservation on the sequence or function
considered. We shall then be able to deduce any of these Tauberian
theorems for R, from its analogue for A.

(5) The hypothesis (12.10.2) is not, as it stands, one of Wiener’s
type. If, however,

t
F(t) = [ flu)du = o(®?)
0
for large ¢, then partial integration gives

f (%yt)zf(t) dt=y f gy F () dt,

where g(t) is, apart from sign, the function of §12.9(6). We shall see
in Appendix III that the convergence of > n-2sin®*nya,, for all small y,
implies that of 3 n—%a,, and a fortiori implies s, = o(n?). If we take
this, and the corresponding theorem for integrals, for granted, then
Theorem 232 gives

f=>1 R,2).f=0(Q1) > f~>1(Ck),

and similar questions about possible generalization present themselves.
We shall see in §12.16 that these are less simple for this g(f) because
it is not of constant sign. We shall, however, prove in Appendix III
that summability (R, 2) always implies summability (A), so that the
Tauberian theorems for (R,2), like those for R,, may be deduced
from those for A.

We end this section by two general remarks.

(a) It will often happen that the result given by Wiener’s theorems
is one which may be proved more simply by other methods: this is true,
for example, of all the theorems of Ch. VII, and of the theorems referred
to under (4) above. The merits of Wiener’s method lie in its great power
and generality, and the light which it throws on the whole subject;
not in simplicity. 4

(b) There will be a complex of Tauberian theorems associated with
any particular kernel g(t) and connected by relations of varying simpli-
city. One of the Wiener theorems concerning g will ‘hit the map’ in
a particular place, which will not always be just the place we want.
It will usually be possible to pass from one spot on the map to another
by comparatively simple arguments; and it is usually easier to do this
than to strain for variations of the general theorems, though such
variations have often considerable intrinsic interest.
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12.11. Applications to the theory of primes. One of the out-
standing applications of Wiener’s theorems is to the theory of prime
numbers. It had long been familiar that the ‘prime number theorem’

: z
(12.1L.1) ") ~ ooz
was ‘roughly eqaivalent’ to the theorem (first proved by Hadamard
and de la Vallée-Poussin) that

(12.11.2) {(A+i7r) £ 0
for any real . Wiener’s theorems enable us to present this equivalence
in & much sharper form than was possible before. All previous proofs
of the prime number theorem took from the theory of {(s) not merely
(12.11.2) but some stronger result such as

16(14-47)| > H(log |7])-
for large |7|.

It is known that the prime number theorem is equivalent to
(12.11.3) $(x) = A(n) ~ =z,
n<T
and also (though the proof of this is less familiar) to
(12.11.4) M(x) = Y u(n) = o(z).t
n<x
We shall deduce (12.11.4) from Theorem 233 and (12.11.2). We choose
g(t) as in §12.9(8), and '
(12.11.5) J(&) = LM (2).
We saw in § 12.9 that g is W, and it is obvious that f is bounded. Hence,

if we can prove (i) that f is slowly oscillating and (ii) that f and g satisfy
(12.8.2) with I = 0, then (12.11.4) will follow from Theorem 233. Now

_ M) M@) _ Me)-M@) , (1 1
fr—fte) = Z T8 - TOHE (1)

z

1 —z M -
z<n<y y

when z - 00, y/x - 1. Thus f is slowly oscillating. Finally,

x z

Jaloa[[]50a=[{ 51 Suo)s- 3 o[

1 m<zft n<i

= D unog— = log’g > uln) =logz = ofz),

mn<x asz nlq

t For the definitions of A(n) and p(n) see Hardy and Wright, Chs. 16-17. We shall give
the deduction of (12.11.3) from (12.11.4) in Appendix IV,
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since the inner sum is 0 unless ¢ = 1, and then it is 1. Hence

[ olt)rerae=2 [ af2)re at—a [ %) de—b [ 0 Z) s =0,

which is (12.8.2) with I = 0. We thus obtain (12.11.4) and the prime
number theorem.

12.12. One-sided conditions. In this section we show how it may
be possible to replace the condition that the f(¢) of Theorem 232 is
bounded by the more general condition
(12.12.1) ft) > —H.

We confine ourselves for simplicity to the most important special case,
in which A(¢) is the g(f) of §12.9 (3); and we shall find it necessary
to put additional restrictions on our present g(t).

THEOREM 236. If (i) g is W, (i) g = O for all ¢, (iii) there are positive

numbers ¢ and K such that

(12.12.2) g(t) >
for 0 <t ¢, (iv) f satisfies (12.12.1), and (v) f and g satisfy (12.8.2),
then fx)—>1 (C,1).

We may suppose (adding H to f) that f > 0, and that f g@)dt = 1.
We write .

(12.12.3) o() =;c f feydt,
so that ’
(12.12.4) o' (z) = {f(x)—o(z)}/x

for almost all z. Then

lf ()f(t dz/_J'fz)dt Koa(cz) >

x

The left-hand side tends to a limit When x - o0, and is therefore bounded
for large x. Thus o(z) is bounded for large , and therefore for > 1.
If o(x) < p for z > 1, then, by (12.12.4),

o'(@) > —a~o(a) > —pa~t
for almost all z > 1. Hence o(z) is slowly decreasing. Next,

J g(u) f(zu)du -1

and 5o i f dy f g(u)f(yw) du — 1.
0
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But the left-hand side is

% f g(u)du f’ flyu)dy = f g(u) {%z juf(w) dw} du

- f g(w)o(@u) & =9_15 f g(:;)a(t)dt.

Hence the last integral tends to I. Applying Theorem 233, with o for f,
we find that o(x) — I, i.e. f(x) -1 (C, 1).

1 2
The conditions are satisfied, for example, if g(t) is e~ or (%f) . The
first case gives Theorem 94 a, while the second gives
THEOREM 237. If f(t) > L(R,) and f(¢) > —H, then f(t) > 1(C,1).

This, together with the corresponding result with R, and (C, 1) inter-
changed, is the theorem of Wiener referred to in § 12.10(4), and proved
otherwise by Szdsz and by Hardy and Rogosinski. The conditions of
Theorem 236 are not satisfied when g(t) is the kernel of § 12.9(6), associ-
ated with (R, 2) summability, since this g(¢) is not of constant sign.

Theorem 236, unlike Theorems 232 or 233, is one with a specialized &,
but this is not a serious disadvantage, since it is usually possible to
deduce (12.8.3), with whatever » we may require, from the existence
of the (C, 1) limit. The theorem is not true for all g of W: some additional
condition on g is essential. Suppose, for example, that

git) = 1—2log% O<t<l1), 0(@>1)
Plainly g is L, and

fg(t)t—“dt 2 i

1—iz  (1—iz) (1—iz)?

so that g is W. If f(¢) = ¢, then f > 0 and

x 1
1 t 1 x 1
» f g(g—g)f(t)dt = ;}f (1—2logz)tdt = xf (l——2loga)u du = 0,
0 0

but f(z) - o0 (C, 1).

12.13. Vijayaraghavan’s theorem. Our next theorem is of a
different kind and does not depend upon the theory of Fourier trans-

forms.
4780 X
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We are led to it by a remark which we made, in §12.10(2), about
the applications of Theorems 232 and 233. These theorems depend on
the hypothesis that f(¢) is bounded, but this hypothesis is often redun-
dant in the application. It is therefore important to obtain other
theorems in which the boundedness of f(t) appears as a conclusion
instead of as a hypothesis. Such a theorem should be of the type ‘if
g(?) is L, and satisfies, say, conditions («); f(?), or s, satisfies conditions

(B); and

g—]; f g(é)f(t)dt -1 f g(t)dt [or % Z g(’—;)sn -1 j g(t)dt],
or at any rate the sum or integral is bounded; then f(f), or s,, is
bounded’. Conditions (8) will not by themselves imply boundedness,
and conditions (x) will not include Wiener’s. This section and the next
will be occupied by the proof of a theorem of this character, due
essentially to Vijayaraghavan. It will be convenient to work, as he
does, with series rather than integrals, and to generalize his hypotheses

a little.
In what follows, then, we shall be concerned with a method of

summation defined by

(12.13.1) () = Y ¢ (®)s, > 8.

We suppose that

(12.13.2) ¢,(x) =0, c,(x) >0 (x—>00), dea(x) =1,
so that the method is totally regular.

THEOREM 238. Suppose that the following conditions are satisfied.
(i) P(u) is positive and differentiable for u. > 1;

(12.13.3) ¢ —> 0, 0<¢ <K,
where K 1s independent of u,
F dt
12.13.4 D(u) = J —
(12.13.4) =] 50

(so that ® — co with u).

(ii) The coefficients c, have, in addition to those already stated, the
properties:
(12.13.5) ng’c”(x) -0
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if M —» o0, x — 00, Q(x)—D(M) - o0;
(12.13.6) iNcn(x) >0,
(12.13.7) iNcn(x){lD(n)—(D(N)} >0,
if N - o0, z —> 0, O(N)—D(x) > 0.
(i) If s(t) = s, for n < t < n+1, then
(12.13.8) lim{s(t)—s(u)} > 0
when U — 00, t > u, t—,—ﬁ—ﬂ);
$(u)
(iv) 7(z) = X c,(x)s, is bounded.
Then s, is bounded.

We shall require a lemma.
THEOREM 239. If s(t) satisfies condition (iii) and $(u) condition (i) of
Theorem 238, then there are positive numbers a and b such that

q
du
(12.13.9) s(q)—s(p) > —a pf ¢(—u)—b = —afd(q)—(p)}—b

Jorq=p>=1.
It follows from condition (iii) that there are a U and 8 such that

(12.13.10) s(t)—s(u) > —1
if
(12.13.11) t>u>U, ‘%<5

If, on the other hand, u < U, ¢t < U-84(U), then s(t)—s(u) has a
lower bound depending only on U. It follows that there are numbers
y and 3 such that

(12.13.12) s(t)—s(u) > —y
for all ¢ and « for which
(12.13.13) 0 <it—u << S(u).

1 That is to say,
Sa@<a  Fa@<a 3 o@@mn-0) <

if 2, M, N, ®D(x)—-D(M), D(N)—D(z) are all greater than numbers depending on . In
the applications x = «(H), M = M(H), N = N(H) will be functions of a single para-
meter H which tends to 0. We shall not use the full force of our conditions on ¢(u)
and c,, and are content to state the theorem in a form sufficiently general for the
applications.
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We write

(12.13.14) py=p, P1= Potd¢(®o)s -y Drs1 = Pr+34(py),

and suppose that p, < ¢ < p,,,. Then

(12.13.15)  s(g)—s(p) = E {8(Pr+1)—s(pr)}+3(0)—3s(p,) > —(r+1)y,

by (12.13.12), and

12.13.16 Sr = p"“‘pk

( : " = (o)

Now

P(Prs1) = @)+ Pr1—Pr)$'(€) (P < € < Prsa)s
$(Pr+1) = POpH1+34'(€)} < (14+3K)d(p4),

(12.13.17) .
Sr < (148K) S PP 5K 14+85K) [ 2%
s ),Z, e < O ’qu() (+ )pquw)
It follows from (12.13.15) and (12.13.17) that
qdu
sta)—stz) > (5 +K) =

which is (12.13.9).

12.14. Proof of Theorem 238. We have to prove s, bounded. If s,
tended to oo or to —o0, then 7(x) would do the same (since the trans-
formation is totally regular). It is therefore sufficient to prove that
the hypotheses

(@) @)= 0(Q1), (b) Iim|s,] = o0
(¢) s, does not tend to co or to —oo,
lead to a contradiction. We write ‘

(12.14.1) 0,(t) = maxs,, oy(t) = max(—s,).
n<i n<

Then it is plain that o,(f) and o,(f) increase with ¢, that one at least
of them tends to oo, and that there are two possibilities: either
() 0,(n) = oy(n) for an infinity of », or (B) a,(n) < oy(n) for all suffi-
ciently large . We consider these two possibilities in turn, and show
that each leads to contradiction.

Case (a). It is plain that in this case o,(f) > o0, and that, given any
H, there are M for which

(12.14.2) sy = oy(M) > 2H,  oy(M) > oy(M).
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We choose the least M = M(H) satisfying these conditions, and then
the least N = N(H) > M such that

(12.14.3) sy < 38yt

there are certainly such N when H is large, since otherwise s, would
tend to co.

Since Sy—8y > —a{®(N)—D(M)}—b,
a{®(N)—D(M)} > sp—sy—b > 38,—b > H—b,
and so O(N)—D(M) -0
when H —» 0. Hence, if we define z by
(12.14.4) O(x) = H{O(M)+D(N)},
then ’
(12.14.5) O(z)—D(M) - 0, O(N)—D(x) - 0.
We write

M-1 N-1 ©
(12.14.6) ~(x) = (ngo +n=§M+ nZN)cn(x)sn = 71(®)+7y(x) +75(2),

and estimate 7;, 75, and 74 in turn, denoting generally by 8(H) a function
of H which tends to 0 when H — co. First,

(12147) (&) > —oi(M) 3 0 > —or(M) 3 0, > —8(H)oy(M),

by (12.14.1), (12.14.2), and (12.13.5). Secondly, since N is the first n
after M which satisfies (12.14.3),

(12.14.8)
@) > k() 3 00 = o, (1— ¥ e 3 3 ) > 3—3(H)jo, (),
by (12.14.2), (12.13.5), and (12.13.6). Thu‘dly, if n > N,

(12.14.9) 8p—38y-1 > —a{®(n)—D(N—1)}—b,
by (12.13.9). Also sy_; > }s,; > H > b1 for large H, and
N
du
O(N)—P(N—1) =
¢( W

so that a®(N) < a®(N—1)+41 for large I-I. It now follows from (12.14.9)
that

8p > —a{®(n)—O(N—1)}+1 > —a{®(n)—B(N)}
for large H, and that

(12.14.10)  r(z) > —a g Ca{®(n)—ON)} > —8(H)
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by (12.13.7). Finally, combining (12.14.7), (12.14.8), and (12.14.10), we
obtain
(%) > —8(H)oy(M)+{}—08(H)}oy(M)—3(H),
which tends to infinity with H, in contradiction to the hypothesis that
7(2) is bounded. Thus case («) leads to a contradiction.
. Case (B). In this case g,(n) > o,(n) for all large n, and oy(n) -c0. We
choose the least N = N(H) such that

(12.14.11) o,(n) > oy(n) (m = N), sy = —oy(N) < —2H;

and then the last M = M(H) < N for which s, > 4sy = —}0,(N):
there are certainly such M when H is large, since otherwise s, would
tend to —oo. Thus

(12.14.12) 85 = —40y(N), 8, < —4ao(N) (M <n < N).
Then
(12.14.13) Sy—8y > —a{D(N)—D(M)}—b,

by (12.13.9), and sy—sy; < isy < —H, so that
a{®(N)—O(M)} > H—b,
and ®(N)—®(M) - co when H -> 0. Hence (12.14.5) is still true when

z is defined by (12.14.4).

We now write
@D

N
(12.14.14) 7(x) = (z + 3+ 3 Jea®)s, = mi@)+ro@)+rs(2),
n= n=M+1 N+1
and estimate 7, 7,, and 7;3. First,
(12.14.15)
M

M M
Tl(x) < al(M) % 129 < al(N) % Cn < Uz(N % cn 8(H 02( 7v)
by (12.14.1), (12.14.11), and (12.13.5). Secondly,

(12.14.16) 7,(z) = z ¢, 5n <_§ag(N)Mz+1cn

0

— o)1= S ea— 3 ) < —(F—8(E)oy),
0 N+1
by (12.14.12), (12.13.5), and (12.13,6). Thirdly,

« o« 0
(12.14.17)  73(@) = D 6,8, < D €, 09(0) < Y ¢, 05(n)
NT1 NT1 NT1

= S co{oa(N)Foy(n)—op(N)}.
N+1
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Now
(12.14.18) —s,—0y(N) = —s,+8y < a{®@(n)—O(N)}+b
for n > N, by (12.13.9), and therefore

(12.14.19) oy(n)—0oy(N) < af®(n)—P(N)}+b.T
Hence, after (12.14.17),
(12.14.20)

@) < o) 3 et 3 cal@n)—N)}+b 3 00 < S(H)ay),

by (12.13.6) and (12.13.7). Finally, it follows from (12.14.15), (12.14.16),
and (12.14.20) that

(@) < —{§—3(H)}ou(N),
and so that r(x) > —c0 when H —>oco. This is again a contradiction,
so that case (B) is disposed of and the theorem proved.

Suppose in particular that
ey = (1—e UR)e iz, d(u) = u, O(u) = logu.

M M
Then Secp=(1—e V) Y e = 1—g~ M2 < @ -0
0 0

if M/x — 0, i.e. logz—log M — oo; and
o 0
2 Cp = (l-—e_ll"’) 2 e—hr — e~ N 5 0
N N

if Njz — o0, i.e. log N—logx — co. Finally,

© Ll
n v
Z calog g = (1—¢ 1) z log(l+l—v~)e‘(N+"’/“
n=N v=0
G—N/Z 1 x
D —i _e-lzn—2 . o~Njx
< ¥z ZW e < {z(l—e M%)} ¢

which tends to 0 if z — o, log N —logx — 0.

Thus the conditions (i) and (ii) of Theorem 238 are satisfied, while (iii) asserts
that s, is slowly decreasing in the sense of §6.2. It follows that if s, = O(1)(A),
and s,, is slowly decreasing, then s, = O(1). We can now deduce from Theorem 233
that if 8, — 8(A), and s, is slowly decreasing, then 8, — 8, which is Theorem 106.
Thus Theoremn 106 is a corollary of Theorems 233 and 238, though (as wesaw in
§12.10 (2)) not of Theorem 233 alone.

As a second example, we may take

)=o), o0 = ()

t o4(n) = max(—s,) = max{oy(N), —8x41, ..., —8y}. If the maximum arose from oy(N),
rsn

(12.14.19) would be trivial ; if from one of —8y;, ..., — 8y, then it follows from (12.14.18).
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(with the same ¢ and ). Then (12.13.1) is equivalent to 8, — 8 (R,). In this case

-2
1 t z [ logu
= O(xft_’bglvdt) = O(ﬁf e du) — 0,
N i

when /M —> o0 and N/x — o0, so that the conditions of Theorem 238 are satisfied.
Thus, combining the theorem with Theorems 234, 70, and 68,1 we obtain

THEOREM 240. If s, — 8(R,), and s, s real and slowly decreasing, then s, —> s.

12.15. Borel summability. We proved in §9.13 that s, — s (B) and
a, = O(n-*) imply s, - s. Our object now is to prove

THEOREM 241. If s, —> s (B) and

(12.15.1) lim(s,—s,) >0
when

- (12.15.2) m — oo, n>m, nv_mmao,
then s, — s.

This theorem, first proved by R. Schmidt and Vijayaraghavan, is
the most general Tauberian theorem concerning (B) summability.

There are various methods. We may combine Theorem 238 with the
ideas used by Hardy and Littlewood in their original proof of Theorem
156: this is the method followed by Vijayaraghavan. Alternatively, we
may combine it with those used in §§9.10-13.} It is more natural here
to combine Theorem 238 with a theorem of Wiener’s type, and this is
the course which we shall follow.

We observe first that it is unnecessary to distinguish between summa-
bility (B) and summability (B’). For s, >s (B’) is equivalent to
8,-1—> s (B), by Theorem 126, and the condition (12.15.1) is plainly
unaltered by the change of m, n into m—1, n—1.

t See § 12.10(4).

1 Certain parts of the argument of §§9.10-13, in which we used the full hypothesis
@y = O(n~t), must then be modified, but the modifications required are not difficult.
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We next verify that the (B) method of summation satisfies the
conditions of Theorem 238, with ¢(u) = 2+vu, ®(u) = vu—1. We have
to show that

M. o "
(12.15.3) e= z % -0, (12.15.4) e—= ; — =0,
(1} .
(12.15.5) e w; (Vn—~N)= >0,
when
(12.15.6) Ne—M — o0, VN —Az —> 0.

If 0<~Nz—vVM =y then M = VM(VNx—p) < z—pvz; and if
) < VN—+z = v then N > 2+ 2wz > 24+vvz. Hence (12.15.3) and
(12.15.4) will follow from

. x—p»la:xn . © s
lim (e-= z | = = 0, lim [e=* z ol =0
pS A > n=0 Foe, ymo z+vVe

and these are true by Theorem 137(4) As regards (12.15. 5), we have

,e—“z(«/n «/N)—— x/ Z (n— N Z (n— x

n=N z +wz

% & zE+m
; (=67 2 T
where ¢ = [z]. It follows from Theorem 1371 that this is

( Z me—""/%‘) ( J; te—1% clt) ( j ue—¥' du) = o(1).

Thus condltlons (1) and (ii) of Theorem 238 are satisfied. Hence (if the
conditions of Theorem 241 are satisfied) s, is bounded.

In order to use Wiener’s theorems, we must express summability (B)
by an integral relation of Wiener’s type. We may suppose, after what
precedes, that s, is bounded, and we may take s = 0, so that s, - 0(B).
Then we proved in § 9.10 (Theorem 151) that

% f e~ ¢-212zg(t) dt — 0
when z - 00,1 i.e. that
: ( (u—y*)*\u
(12.15.7) jex { 7 s(u2 du—->0
J P % |y )

t Using (9.1.8) for the range (v|£, £) and (9.1.6) for (¢£, ). See the remark in § 9 10
about the triviality of the ‘tails’ of such sums.
1 Actually we assumed only that s, = o(\n).
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when y - 0. We now replace this by the simpler formula
(12.15.8) f e~ 2u—v’g(u2) du — 0.

It is plain that (12.15.8) will follow from (12.15.7), when s(t) is
bounded, if

(12.15.9) f e~ 2u-u? _’iexp{_w} du — 0,
.. y 2y
ie. if
(12.15.10) J = f |, y)| dw > 0,
et
where d(w,y) = e—z"”—y—_'z;—wexp‘——2w2(-2y2$’)2}.

We divide J into the two parts J; and J, in which |w| > y* and
|w| < y*, where 0 < 3a < 1. In Jj, for large y,

0<3’%’<lw|, YT S 1,

and ¢ = O(|w|e~#"), so that J, is trivial. In J, we have w = O(y%),

e W, (.2-'/_"'_'1’)2:1 O(y*?
” +0(y*), 5% +0@*),

eXp"zwg(Qy—é;E)z} = exp{—20*+0(y** 1)} = e {1+ 0™},
J, = O3> f e duy > 0.
This proves (12.15.9) and therefore (12.15.8).

We now take g(t) = e~ and f(t) = s(#2) for t > 0, 0 for t < 0. Then
gis W (§12.9(1)). Ift > w, w >00, t—u—> 0,7 = 1%, v = u?, then
T—v 2—u?

— == 2t —
% ; < 2(t—u) >0,

and so Lim{f(t)—f(u)} = lim{s(r)—s(v)} > 0.
Hence f(t) is slowly decreasing (§12.2); and, since we have proved it
bounded, it follows from Theorem 221 that f(t) — 0, i.e. that s, - 0.

12.16. Summability (R, 2). We end this chapter by proving the
theorem for (R, 2) summability which corresponds to Theorems 106 and

240, viz.
TaEOREM 242. If s, > s (R,2), i.e. if

X0 = an(SiZ;‘”)z» s

when @ — 0, and s,, is slowly decreasing, then Y a, = s.
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This theorem, and its analogue for f(t), present fresh difficulties, since
the g(¢) now relevant, as we saw in §§ 12.10(5) and § 12.12, is not positive.
If we knew that s, is bounded, we could prove the theorem on the
lines sketched in §12.10, first deducing summability (C,k) from our
general theorems, and then passing to convergence by means of
Theorems 70 and 68. But we cannot supplement this argument here
by an appeal to our later theorems, and it seems simplest to use different
methods.

We write

ay =a, (@, >0), 0(a,<0); ay =a, (@,<0), 0(a,>0);
sothata, = a;} +a;, |a,| = a;f —a, . Weare given that lim(s,—s,,) > 0
when n > m, m - o0, (n—m)/m — 0; and it follows, taking m = n—1,
that @, — 0, and that > n~2a, is (absolutely) convergent.

Next, Y n~2a,sin?nf is (by hypothesis) convergent for small 6. It
follows that ¥ n~%a;} sin?nf is convergent for small §, and therefore, by
Egoroff’s theorem, uniformly convergent in a set E of positive measure

mE. Hence at
= | sin2nf df < co.
z n? f
E

But f sin2nd df = } f (1—cos 2n6) d6 - ymE
E E
when n ->oc0. Hence Y n—2a; is convergent, and Y n—2a, absolutely
convergent.

We suppose, as we may, that s = 0. Then the series for 62y(f) con-
verges absolutely and uniformly for all positive 8, and x(f) = o(1) when
6> 0. If 5 > 0 then

862 ( n
82+02 22 f(l—cosZné) o = }n z —2(1—e¢-23),

the term-by-term mtegratlon belng justified because
_8df

Differentiating twice with respect to 8, we tind

s 1 5 5(52—362
Sagertns = 2 [ o6 )882(82+02)d0— -2 [ oo ((82+02)3)d0.

Since x(6) = o(1), the integral here is

of [ B an) — o [ =50 = ot
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when § - 0; and s0 Y a,e~2" > 0, i.e. s, - s (A). The conclusion now
follows from Theorem 106.

We have proved that if s, > s(R,2), and s, is slowly decreasing,t
then s, —> s(A); and this is enough for our purpose. It is, however, an
imperfect theorem because, as we stated in §12.10(5) and shall prove
in Appendix III, s, - s(R, 2) implies s, > s (A) without any restriction
on s,. If this were granted, then Theorem 242 would naturally be a
direct corollary of Theorem 1086.

NOTES ON CHAPTER XII

§12.1. Wiener’s original investigations are contained in his book The Fourier
integral and his paper ‘Tauberian theorems’, Annals (2), 33 (1932), 1-100: the
latter includes an elaborate bibliography of earlier work. A good many generaliza-
tions and simplifications have been made since by other writers, particularly by
Pitt, PLM S (2), 44 (1938), 243—-88. An important intermediate paper is that of
Bochner, BS (1933), 126-44: Bochner shows that Wiener’s analysis may be
simplified considerably if we are prepared to impose rather stronger conditions
on the kernels g.

There is a very clear account of the theory in Widder, ch. 5: both his account
and that in §§ 12.1-8 are based largely on Pitt’s.

§12.3. The theorems stated without proof in this section will be found in
Titchmarsh’s Fourier integrals.

§12.4. For ‘strong convergence’ see Titchmarsh, Theory of functions, 386 et
seq.; Littlewood, 45 et seq.

§12.9. All these kernels appear in Wiener’s work except (8), which was
introduced by Ingham, JLMS, 20 (1945), 171-80.

§12.10. The theorems referred to in this section have been proved by different
writers with different degrees of generality, and we do not give detailed references
here: Broadly, the results of (1)-(3) were known before Wiener, his contribution
being to include them in his general theory, while in (4) and (5) the results also
are mostly his.

The papers of Szész and of Hardy and Rogosinski referred to will be found in
AM, 61 (1933), 185-201 and JLM S, 18 (1943), 50-7.

§12.11. We have given Ingham’s proof of the prime number theorem, l.c. under
§ 12.9. Wiener’s proof is based on the kernel (7) (of § 12.9). Cf. Widder, 224-33.
Widder includes proofs that {(1-+4r) % 0 and of all arithmetical theorems needed.
Wiener and Widder aim directly at (12.11.3). If we choose, as in the text, to work
with u(n), then it is convenient to take

(a) 3 n~'u(n) converges to 0
as our immediate goal: (12.11.4) is a corollary, by Theorem 26 (§4.7). If

sy = > 0,
n<t

t Actually we have used much less, in fact only lim @, > 0.
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then f(¢), being the sum-function of a series whose general term is O(n™1), is slowly
oscillating. Also, if¢ > 1,

D Ho[E] = S 3 1= 3w = 5 ) = 1.

<
= m<t/n

Hence t Z I_‘:_L”_) =14 Z p(n)(%— [ﬂ) = O(t)
n<t n<t

for ¢ > 1, and so f(¢) (which is zero for ¢ < 1) is bounded. Thus f(¢) satisfies the
conditions of Theorem 233, and it is sufficient to prove (12.8.2) with this f and with
g asin § 12.9(7).

il
If Fly) = D pin) s,
then, on the one hand,
1

F(y) = g p(n) .Z: e = g e %p.(n) =e¥V=0() = o(g—/),

when y — 0, and on the other,

1 ) g
Fy) =, >

n l—e ™

n+1 ©
1 nye™ 1 d [ yte~vt _
=7 Zf(n)Al_e_m, =3 Zf(n) f 3;(——1_6_”,) dt = off(t)g(yt) dt.

Thus the last integral is o(y~1), and this proves (12.8.2).

There is a further and quite different proof of the prime number theorem, baged
on Wiener’s ideas as developed by Tkehara. For this see Widder, 233 et seq.
The proof was reduced to its simplest form by Landau, BS (1932), 514-21. See
also Bochner, MZ, 37 (1933), 1-9; Heilbronn and Landau, ibid. 10-16, 17, and
18-21; Karamata, MZ, 38 (1934), 701-8.

§12.12. Theorem 236 is apparently new. There is a theorem of Pitt [DM.J,
4 (1938), 437-40], proved in Widder, 215-21, which we might use instead and
which imposes less restriction on g, but the proof is more difficult, and Theorem
236 is sufficient for our purposes here.

§§12.13-14. Vijayaraghavan, JLMS, 1 (1926), 113-20, and PLMS (2), 27
(1928), 316-26, proved the two cases of Theorem 238 required for A and B
summability. The arguments which he used in these cases contain all the essential
features of the proof of the general theorem. See also Karamata, MZ, 34 (1932),
737-40, and 37 (1933), 582-8.

§12.15. Theorem 241 was first proved in this form by R. Schmidt, Schriften d.
Konigsberger gelehrten Gesellschaft, 1 (1925), 205-56; and other proofs have been
given by Vijayaraghavan, l.c. supra, and Wiener (l.c. under §12.1). The proof
here is essentially a simplification of Wiener’s.

§12.16. For Egoroff’s theorem see Titchmarsh, Theory of functions, 339, or
Littlewood, 30-1.




XTIII
THE EULER-MACLAURIN SUM FORMULA

13.1. Introduction. The ‘Euler-Maclaurin sum formula’

(13.1.1) mf__jlf(m) ~ f f@) dx +C+3f(n)+ z (_1),_1(_%_! fer-o(n)
a r=1

expresses the finite sum on the left in terms of the integral and the
derivatives of f(x). The exact theory of the formula belongs more to
that of asymptotic than of summable series, but it is so important in
many branches of analysis that we must discuss it seriously here.

We begin by considering one or two particularly simple cases. It is
plain that the formula will be most useful when f(x) behaves regularly
for large x and the order of the kth derivative f®(z), considered as a
function of z, decreases as k increases.

We suppose first that 0 < a < 1, that f'() is continuous for z > a,
that f > 0, f* < 0, and that f - 0 when z —co. Then

[1r@rd = — [ 1@ de=fn)—f) 1)
1 1

when £ - 00, 8o that

[ £/ @1 de = f1) <eo.

1
Ify = z—[x], so that y = z—m+1form—1 <z <m, then0 <y <1
and ®

J = f yf (%) d
is absolutely convergent. Also
jm=f)— [ fl@)de = [ {fom)—f@) de
m—1 m—1

= [ oLz = | uria i

m—1 m—1
n

$ fm)— [ @) dz = 3 ju= [ (e~ [2)f (@) do
m=2 i m=

1
Tt follows that, if

(13.1.2) F(z) = f f(t) dt,
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then
n
(13.1.3) 3 fm)—F@) (1) —F()+J
m=1

when n ->o00. If our conditions are satisfied for every a > 0, and f(x)
is integrable down to 0,1 we may take @ = 0in (13.1.2) and (13.1.3).

Secondly, suppose that f”(z) is continuous for z > a; that f' > 0,
J” < 0; and that f' - 0 when z —co. Then

x

[1ro1de = — [ £y ds = f/()—f (@) > £1)
1 1
and |f”| is integrable up to co. Thus ‘

J' =1 [ @P—y)f'(x) da
1

is absolutely convergent. If

g = Hfm—1)+fm)}— | f@@) do

=fm)— [ {f&)+4f @} de = ju—} [ f'(2) da,
m—1 m—1

then
Jm = (y—3)f () d=
I

=3 [ 10% e - [ w-wraa,
m—1 m—1

since y>—y - 0 when & >m—1+40 or # >m—0. Hence, summing
from m = 2 tom = n,

HO)+H@+ - Hfn—1)+1fm)— [ f@) de = —} [ (42—y)f" (@) da.
It follows that ! !
as.Le) 3 fm)—Fin)—1fn) > 1)~ F(1)—T"

We may regard (13.1.3) and (13.1.4) as the two simplest cases of (13.1.1), with
C =f)—F()+J, C=3}f(1)—F(1)—J"
respectively. If, for example, f(x) = logx and @ = 1, then our second set of condi-
tions is satisfied, and we find that

1 wy’—y
logn!—(nt+logntn >4 = 1+5 | =5=da,
1

1 In which case zf — 0 when = — 0 and zf" is also integrable down to 0.
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or that n! ~ edn®tle—n. This is (apart from the calculation of 4, which is actually
4log 27), the simplest form of Stirling’s theorem, and it is natural to expect that
a fuller investigation of the formula (13.1.1) will lead to a complete asymptotic
expansion of logn!.

13.2. The Bernoullian numbers and functions. We shall investi-
gate the formula in this chapter by two different methods, by real
analysis in §§ 13.5-7, and by the use of Cauchy’s theorem in §§13.14-16:
the second method will naturally demand much more stringent condi-
tions on f(z). Our first method depends upon the properties of the
Bernoullian functions B, ().

We define the Bernoullian numbers B,,, and the functions B, (x) and

$,(z), by

(1321 etL —1— §t+B12' B2§+...

— 1—%t+z (—1)n- 13,1(2 T
(13.2.2) ef_l =14+ z Bn(x)m,
(13.2.3) t‘f__ll => $ule)

Here, and to the end of the chapter, sums without limits run from 1 toco.
The left-hand side of (13.2.3) is 0 for # = 0 and ¢ for = 1, so that

(13.2.4) ¢,(0) = 0; (13.2.5) ¢,(1) =1, ¢,(1)=0 (n>1).
The series are convergent for [¢| < 27. The first B, are
B, =%, B,=4 B;=4 By =g B; =
It is plain that
B,(z) = $1(x)—} = =z—14, By(x) = ¢o(x)+3,
By(x) = ¢s(), By(x) = ¢y(x)—B,, ...,
and generally
(13.2.6) By(@) = ¢y (@)+(—1V1B,  Byu(®) = (@) (r > 0).
In particular
(13.2.7)
B,,(0) = B,,(1) = (—1)y'B,, By 11(0) = By iy (1) =0 (r > 0).
It is familiar that '

(13.2.8) | B = s 1

22n—1, 2n m2n

(so that B, increases rapidly for large n).
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The first ¢,(z) are z, 22—, 2®—3a?+4z,.... Writing (13.2.3) as
A 12 g
> bule) 7 = (1——%t—|—312—!— ) > —
and equating coefficients, we find that
(13.2.9) ¢, () = x”—%nx”—l-}-(Z)le”-z—(Z)ng“-4+...,

the last term being one in « or z2.

R R |

The identity ¢ —t — fett
¢—1 ¢—1
shows that
(13.2.10) bu(@+1) =P (2) = nan1,

and from this and (13.2.4) it follows that
(13.2.11) 1149714 4 Nn-l =14 (N+1) (n > 1).
Differentiating (13.2.2) with respect to =, we find

in tzexl in+1
> Bue) = =1+ > Bu@) =t

and hence, equating coefficients,
(13.2.12) Bj(x) =1, B,(x)=nB, () (n>1).

The corresponding equations for the ¢,(x) are
$i@) =1,  4a@) = 2y(x)—3},  $5@) = 3{ds(x)+ Bu};

and generally
(13.2.13)

¢f’am(x) = 2m¢2m—1(x)’ ¢’2m+1(x) = (2m+ 1){¢2m(x)+(_l)m—le},
the first for m = 2, 3,..., the second for m = 1, 2,....

13.3. The associated periodic functions. We now define B,(x)
and ¢, (x) as the functions equal to B, (z) and ¢,(z) for 0 < z < 1 and
with period 1. It follows from (13.2.4)~(13.2.6) that B, (%) and ¢,()
are continuous for all z if » > 1, while B,(z) and #,(x) have a jump —1
for every integral .

We know that

LS T j = — (@

4780' Y
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for 0 <z <1, and that the series is boundedly convergent. If we
integrate term by term, we obtain

1 1—cos 2mnx
o2 Z g fe—3a? = —3dy(2),

and so L Z (M 1@ —a+1) = Hdo(x)+ By}

22 m2
Hence
1 2
1331) o5 > T = M)+ By = iBya)
for all z. Generally
(13.3.2)
1 2 —1)k-1 —1)k-1

22](;..1,”_2]5 Z cos,,n;:ﬂx = ( (2]0))! {()[I2k(x)+(—1)k_lBk} = ((—2]3)!—32,‘(-’8)
and
(13.3.3)

1 sin 2mm: (—1)&-1 (—1)s1

922k +1 Z mEeL 2+ 1),‘/’2k+1( ) = (2k+1)!sz+1(‘”),

for £ =1, 2,... and all . For (18.2.7) shows that they are true for
z = 0; (13.3.2) is the formal derivative of (13.3.3); and (13.3.3), with
k—1 for k and the sign changed, is the formal derivative of (13.3.2).
Finally, (13.3.3) becomes true for £ = 0 and non-integral z if we
substitute yf(x) = ¢, (x)—% for ().

13.4. The signs of the functions ¢, (z). It follows from (13.2.4) and
(13.2.5) that all the ¢, after ¢, vanish for 2 = 0 and 2 = 1. We now
prove

THEOREM 243. T'he functions ¢,, ¢, dg,... have fixed signs in (0, 1), that
of ¢or being (— 1)k, while ¢g, bs,... vanish also for x = %, and ¢y, has
the signs (—1)*-1 and (—1)* in (0, }) and n (%, 1) respectively.

First,

tn (—t)» ¢ ¢
ne 1 = =
2¢n(2)n_! Z¢'n(2) n! - e§t+l+e_§¢+l t,
80 that ¢g(3) = ¢5(4) = ... == 0. Thus ¢,,,(x) has the three zeros
0,4, 1.
Next, our assertion is true of
$a(x) = w(@—1),  Pg(2) = 2(x—})x—1).
We assume that it is true up to ¢,,,_;, and prove that it is true of ¢,,
and ¢,,,,. Since ¢, = 2mep,,, _, vanishes at 0, }, and 1 only, ¢,,, is
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of fixed sign in (0, 1); and (13.2.9), for small z, shows that the sign is
(—1)m. Also ¢, is monotone in (0, }) and in (}, 1), and so

Fom+1(%) = (2m—+ 1){952",(:1:) +(— l)m_le}
can vanish at most once in each of these intervals. Thus ¢s,,,;, which
vanishes at 0, }, and 1, is of fixed sign in (0, %) and in (4, 1), its sign in
the first of these intervals being (—1)™-1, by (13.2.9), and in the second

(—1)m, since dop,4(3) # 0.
We shall also use the properties

(13.4.1)  Byp4(@) = —Bppy(1—2), Byn(®) = Byp(1—2)
O<z<l; m=12.).

These equations follow from the trigonometrical developments of § 13.3,
or from the fact that

te”‘—l—e(l—x)‘ _ 1tcosh(:::—?{;)t jeo—el-ok tsinh(x—-%)t
é—1  sinhdt °  é—1 sinh}¢

are even and odd functions of ¢ respectively.

13.5. The Euler-Maclaurin sum formula. In what follows we
assume the continuity of all derivatives of f(x) which occur for > 0:
f(x) will usually have a singularity at * = 0. We define F(z) as in
(13.1.2): a will usually be taken to be 0 when f(z) is integrable down
to 0.

We suppose in the first instance that 0 < x < 1, and that f(z) and
its derivatives are continuous in this closed interval; and we consider
the integral

1
(13.5.1) b= ple) = —3; [ Bie—0fo0 &t
V]

where r > 1. We must distinguish the casesr > 1 and r = 1.
If r > 1 then B,(u) is continuous, and

dB(x—1t) _
dt
by (13.2.12). Also B(x—1) = B,(z) = B,(x). Hence
(13.5.2)

. 1
e = — 2D e (1)—pr O} — s [ Broate—) 00 d
0

—rB,_;(z—1),

= —EBgenq) —pev0p+p,y (> 1),
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If r = 1, we suppose first that 0 <z < 1. In this case B,(u) has
jumps —1 for integral 4, and differential coefficient 1 elsewhere, so that

dB,(z—t) _

B(—0)—By(+0) =1,

—1.

Hence

1 1
fo)— f 10 &t = B0 -By+of@+ [ LD g a
0
Also

del(x t)f(t) dt = 1(+0)f(x)—-B1(x)f(0)—JBl(x—t)f/(t) dt,
0

f d_Blg“t) F(t) dt = By(z—1)f(1)—By(—0) f(z)— f B,(@—0)f () dt,

and B,(x—1) = B,(x) = B,(x). Hence, combining the last three equa-
tions, we obtain

1 1
(13.5.3) f(@)— [ () dt = By@}{f(1)—fO)}— [ Bym—)f'(t) dt
[1] 0

= By(x){f(1)—f(0)}+p,.
We have proved this for 0 <<z < 1, and it holds, by continuity, for
0.
Supposing now that I > 1, and combining (13.5.3) with (13.5.2) for
r = 2, 3,..., [, we obtain

(1354  flo) = f o d+ S BB ey pe-noyp

r=1

for 0 < # < 1. The equation reduces to (13.5.3) for I = 1, so that it is
true for 7 > 1.

We now replace f(x) by f(x+m—1), where m is a pos1t1ve integer,
and obtain

fatm—1) = f s de+ S B fenn)—fr 1))y

r=1

where

NII-"

f By(x—8)f%() dt.
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If, in particular, we take x = 1, [ = 2k--1, observe that
Bi(1) =%, By,(1)=0 (s>1), By(l) = (—-1)¢1B,

Bopi1(1—1t) = —Baria(t) = —Para(),
by (13.2.7) and (13.4.1), and then replace s by r, we obtain

flm) = [ §(t) db 4 3{f (m)—f(m—1)}+8,(m)—S(m—1)+ 0y
or m—1
(13.5.5) Hflm—1)+f(m)} = [ ft) dt +S(m)—Sy(m—1) 40y,
where m

(13.5.6) 8 (m) = z (— 1) CBs a1,

r——l

(1B57) o= f a8 4 di
m—1

- (2% +2)
— et j o 4() e,
by another partial integration, since i, +2(0) Poria(l)=0. If k=0
then the terms S, (m) and Sy(m—1) disappear from (13.5.5).

Summing (13.5.5) for m = 2, 3,..., n, and adding 1f(1)+3f(n), we
obtain

(13.5.8) iﬂm) — Fn)+4f(n)+8,(n)+ B+ Ty,

= 22k+lﬂ.2k+2

@k+2)!

(13.5.9) B, = —F(1)+3/(1)—8(D),
(13.5.10) Uun = — gy | YawnaOF200) de.
If we write '
(13.5.11) Xawnal®) = > St
m=1
— (VT s (— 1P B,
then
—1)k+1 ; 1}k 7
Uon = gursiagess | XuwesOF 205000 dt 4 C) D [ pamsag)
1 1
mgirs | xeweaOoen(e de 4 ) Do poean)_gorenqy)
1
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Hence we may also write (13.5.8)-(13.5.10) as

(13512) 3 fm) = Fo+H0)+Sena(m)+ Qut- Vi

(13.5.13) @ = —F)+3f0) (D),
—1)+1 ~
(13.5.14 A e T YA OL

1

When f(z) is a polynomial, S(n) is also one, and U}, vanishes for sufficiently
large k. If, for example, f(z) = %, we may take k to be 3l or }(I—1). In this case it
is easily verified that (13.5.8) reduces to (13.2.11).

13.6. Limits as n—> co. So far there has been no question of con-
vergence. We now introduce the hypotheses that

(13.6.1) ) f|f‘2"+2)(x)| de <o
and
(13.6.2) f@AD(z) > 0

when x> o0; and write the integrals over (1,m) as differences of
integrals over (1,0) and (n,c0). We then find

(13.6.3) ﬁf(m) = F(n)+3f(n)+S(m)+Cy+ Ry,

(13.6.4) G, = —-F<1>+%f<1>—sk(1)—(—2k—§r2—)! f sl fEDC) db,
1

(13.6.5) Ry = gy | eesOF50 .

There are alternative forms corresponding to (13.5.12)-(13.5.14).
It is plain, since yy.,,(t) = O(1), that R, — 0 when n —oco. Hence
it follows from (13.6.3) that

(13.6.6) ? Fm)— F(n)—Lf(n)—S,(n) - C

The most interesting case is that in which (13.6.1) and (13.6.2) are

true for all & from a certain K. Then (13.6.6) is true for k¥ = K and

k= K+1, and .
—1)E

S a(n)—Sgln) = D Drea

(2K+2)| f(2K+l)(n) - 0.
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It follows that Cg,, = Cx, so that C;, is independent of k for k > K.
This is easily verified directly, since

1 0
— v orr | Parsa(t) S ERHI(E) dt
(2k+2)! lf »
_ (_2110)!14-1 B, ']‘.(216_1)(1)__5}(:-f j Por(t) FEO(E) dt,
1

by two partial integrations.

Thus G, is, for k > K, independent of (n and) k, and C = C,, is
a number depending only on f(x) and F(z), i.e. on f(x) and the lower
limit @ in (13.1.2). We call C the Euler-Maclaurin constant of f (and F).
We shall also call C the (R,a) sum of the series 3 f(n), and write

(13.6.7) FO)Ff@)+...+fx)4-... = C (R, a).

We thus obtain another definition of the sum of a divergent series, but
one of a quite different type from most of those which we have con-
sidered, and primarily adapted to series of positive terms such as
14-1-+41+... or log 2-log 3+log 4+-....

The R stands for Ramanujan, whose work with divergent series was
mainly based on this definition. The definition is implicit in much of
Euler’s work. The sum which it attributes to a series depends on the
value chosen for a. We shall, however, find that there is usually one value
of a which it is natural to choose in any special case.

We shall call (13.5.8), (13.6.3), or one or other of their variants,
according to the context, ‘the Euler-Maclaurin sum formula’.

13.7. The sign and magnitude of the remainder term. We now
strengthen our hypotheses by supposing the derivatives of f(x), from
a certain point onwards, of constant sign. To fix our ideas, we suppose
(13.6.1) and (13.6.2) true, and f@*+3(x) < 0,for £ > K and 2 > 1.+ If
now k > K, then, after Theorem 243, R, , has the sign (—1)* and R,_, ,,
the sign (—1)*-1; so that | R, | < | Ry_y,—Ry,|. But

By = —'@70:1_2—)! ff C D sg 0 = — (210%)—; ff @+ Do 11 At

= (27—1}——1—)_! f SO sy b = '2-;0—, f {hox+(—1)%-1B,} f@0 dy

(all the integrations being from » to o), and so
_p (1B op
By yn— B = —%T_f (n),

1 In which case f(2¥+1)(z) is non-negative for k& > K, and f®(x) - 0 for n > 2K4-1.
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which is the last term of S(n). Hence we obtain

THEOREM 244. If f(x) satisfies (13.6.1) and (13.6.2), and f@*+2(z) is
of fixed sign, for k > K, then the error in the formula

3 flm) = F(m)+3fm)+Sy(m)+C

alternates in sign as k increases from K1 onwards, and does not exceed
the last term retained in the series; and the series (13.6.4) for C,, = C has
the same properties.

The series

(13.7.1) Sy =S (U5

B
7 f(2r-1)
o o)
and 8(1), obtained by making % infinite in Si(n) and Sy(1), are usually
divergent, owing to the rapid increase of B, for large r. They may

however, often be used effectively for purposes of numerical computa-
tion. If

(i) @, is real,
(i) s = a,+a,+...+a.+ R, for every r,
(iii) R, alternates in sign,
then we may say that the series Y a, alternates round s; we may

suppose if we please that condition (iii) is satisfied only for r > r,.
It is plain that IR| < |a]

(for r > 1 or r > r,). The definition does not determine a unique s;
if, for example, R,,_; < 0 and R,, > 0, and

pL= mjaner P2 = mrianzr—ﬂ,

then > a, also alternates round any number of the interval (s—p,,
8+p)-T

The important case is that in which a,, R,, and s are functions of a
parameter x, and |B,(x)] - O

as ¢ - oo (for r > 1 or r > r;), as, for example, when

S a,(x) = o Feprt ezt
is a divergent asymptotic series for a function g(z). If S a.(x) alternates
round g(x), in the sense just explained, then we shall say that > a,.(x)
is a semi-convergent series for g(x). Thus our conditions are satisfied,
with = n, by the series (13.7.1), under the conditions of Theorem 244.

+ Thus all the conditions are satisfied by the series 1—2-+2—2+... with 8 = 0. Here
R, is alternately —1 and 1, and the series alternates round any number of (—1,1).
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If  is given, | R,(x)| - 0 when z — co0. If z is given, | R (x)| will usually
tend to infinity when 7 - c0. It will, however, generally happen that,
for a given «, |R,(x)| is conveniently small for a suitably chosen , for
example, for an 7 for which |a,(z)| takes its minimum m,; and then the
series may be used for the computation of g(x). The computation will
be the more accurate the larger x.

In these circumstances we may reasonably say that > c, = 3 a,(1)
is a semi-convergent series for s = g(1). We cannot say that s is the
‘sum’ of the series, since > ¢, alternates round any number in an
interval (s—p;, 8-+p,); but s will often be the sum of the series in some
other senée.’]' Further if ¥ a,(x) is a semi-convergent series for g(z) —h(x),

we may say that h)+ S 0, (@)
is a semi-convergent series for g(x).

For example, returning to the series (13.7.1), let us suppose that f(x) = loga
and a = 0, so that F(x) = zlogz—=z. Then our conditions are satisfied forr > 1,
and we are led to the formulae

n B,1 B;1 B;1
] — — ot St Rl Rt A
(13.7.2) logn! = 21 logm = (n+3)logn—n+C Ten 3 4mT56m "

. B, B, B;, 6 B
(13.7.3) C = 1‘1—.—2+ﬁ‘ﬂ3+7._8—“”
The series are semi-convergent, and can be used to calculate logn! and C. We
shall see later that C = }log 2.

We cannot calculate C with great accuracy from (13.7.3) because n = 1 is
too small. The least term is that last written, which is —-00059, and we can
calculate C = -919..., to 3 places, by stopping there. This value of C, used in
(13.7.2), would then give a fairly accurate value for logn! for large n. On the
other hand, we could calculate C, with much greater accuracy, by using (13.7.2)
with a fairly large n and computing logn! independently.

In practice the C of a given f would be computed by writing

S fn) = fQ)+...+f(N)+ X f(n+N),

and applying our formulae to the last series, for which they will be more effective
the larger N. A judicious choice of N should then make both parts of the calcula-
tion practicable with considerable accuracy.

The method may be applied to convergent series whose convergence is in-
conveniently slow. In this case we must take a = o0, so that F(n) — 0, and C
is the sum of the series. Thus Euler, taking f(z) = (z+9)~2, calculated

w2 1

1 1 1
T mtgtetgt 2, nrop
to 18 places of decimals.

t See, for example, §§ 13.15-16.
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13.8. Poisson’s proof of the Euler-Maclaurin formula. Poisson,
in his investigation of the formula, starts from the theory of Fourier
series.

Suppose that f(x) is indefinitely differentiable for z > 0, and that
0 <a <b <. Then, by the ordinary theory of Fourier series,

(18.8.1) f@) = ;- f fO @S f ) cos_2ﬂ;(i;x)dt,

where the integrations are over (a,b), for a <z <b. For z = a or
z = b the sum is {{f(a)+f(b)}. We take nw = b—a and
x = a, atw, a4 2w,..., a+{(n—1w,
substitute in (13.8.1), and add the results. We thus obtain
(13.8.2)  3f(@)-+f(@+w)+...+fla+n—1)w}+10)

_—_&ff(t)dt—]—%iff(t)écos%%iw)dt.

The sum under the integral sign is
omir(t—a) %t 2mirs }
Rexp 20 5 exp 270

and the sum here is 0 unless r = In, where [ is a positive integer, and
then it is n. Hence (13.8.2) is

(13.8.3) .
1 2 2nrl(t—a)
Hortfaror.+10) = [ fod +5; [ 0 2= g

2nl(t—a) i

w

Now f f(t)cos—zzl(i———m dt = —%’; f f'()sin

k w \2r
= > (=1 () geve)—ser-an+
r=1

) [ roteos =

by repeated partial integration. Substituting in (13.8.3), and using
(13.2.8), we obtain
(13.8.4)  3f(@)+f(atw)+...+3(0)
k
=2 [rod+ > 1yt Zegpene) —povay 4w,

r=1

dt.

2k~1 1 2nl(t—a
where W, = (_1)k2_;"k__w f f(Zk)(t)zzﬁcos ”(w )
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If, in particular, we take a = 1, w = 1, b = n--1, then (13.8.4)
becomes

FOH@+ At 1) = P4 1)—FO)+ -+ D+ +
k
+> (—1),'-1;—9;! {0t 1) —fE-D(}+

=1
( 1)k cos 27rlt
22k-1,,zk f n(t) 121 12k

This is equivalent to (13.5.12), with n+1 for n and k—1 for k.

13.9. A formula of Fourier. We can now give an account of
Fourier’s formula (2.9.2). This was

(13.9.1) dnfl) = > (_1)hf<2h>(ﬂ)(sinx~%‘1,3_f+ )
h-
_ 92hp2h+1 x-|-'rr
- ,Z B B )
where f(z) is odd and —7 < <. If we write
x+7

=9 r=ly—1) f@ = f{2n(y—1)} = 9(¥),
so that 0 < y < 1, it becomes
_ o 9
(13.9.2) g(y) = 2 ;) RS

Now (13.5.4), if we assume that p—> 0, gives
(13.9.3)  g(y) = fl g(t) dt + i%—(!y—){g‘”‘”(l)—g‘”“’(())}
1
Also f(z) is odd, so zhat g(1—y) = —g(y); and hence
fota—o,  genom)—go-no) =0, gan(1)—goM0) = 2g581),
0

and (13.9.3) reduces to (13.9.2).

Suppose, for example, that f(z) is an integral function of exponential
type less than 1, so that g(y) is of type less than 2. Then gM(y) = O(c),
where 0 < ¢ < 2x, uniformly in (0,1), and By(y) is O{(2m)1!}, also
uniformly, by (13.3.2) and (13.3.3). Thus p,— 0, and Fourier’s formula
is valid.
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13.10. The case f(z) = z~¢ and the Riemann zeta-function. We
now consider the case in which f(z) = % and a@ = 1, so that
(13.10.1) .

F(z) = Fla,s) — f £ df =

i
and F(z,s) is an integral function of s.

We suppose first that s is real and s > S, where S < 0. Then (13.6.1)
and (13.6.2) are true for 2k > —S—1. Hence, writing s® for
8(s+1)...(s+p), we obtain
(13.10.2)

n
o=t
1

(13.10.3)
)

O) = 5+ 2 (—ayrn e 2t [ s

1

ifs #1and 2t > —S—1. Also

8(2k+1) r —s—2k -2 2k—1
Bin = ooy | Hawna*-% &t = O(u-s-se-1,
n

TPl a1, loge (s=1),

_s+ z (___l)r-ls(zr-2)(2 )|n—s-2r+1 - C(s),

Thus
(13.10.4)

U ~ 1,5 rager- Br . _s_ari1
Zm -3 C(s)+1n Z( 1)1 (2)'n

in the notation of § 2.5 (with n! for z).
We have supposed s £ 1, but our formulae are still valid, with
F(n) = logn, for s = 1. In particular

14+34... —|-;&—logn - C(1),
so that C(1) is Euler’s constant y. We thus obtain the formulae

(13105 y——+§<—1)'-1 —~ f Varsald) s
and
(13.10.6) y =5+ 20—,

the last series being semi-convergent in the sense of §13.7.
We now consider complex s. There is then no question of semi-
convergence. But if s = o427 then R, = O(n-°-%-1), uniformly in 7,
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and our other conclusions stand, with o for s in the appropriate places.
Also (13.10.2) holds uniformly in any closed and bounded region D
throughout which o > 8, so that C(s) is an analytic function of s regular
in D and therefore, since S may be any negative number, C(s) is an
integral function. Finally, when ¢ > 1,

00 = tim (¥ mee =P = S e 2 — g0 L
1

We have thus proved

THEOREM 245. Riemann’s function {(s) is an analytic function of s,
regular all over the plane except for a simple pole at s = 1, where it behaves

. 1
like sTl+Y+""

We have also obtained a series of analytical representations of {(s),
such as

(13.10.7) {(s) = lim {Zm‘s—-——j—%n—s} (6 > —1),
1

1-8

(13.108) L(s) = lim ‘i m-s— —%n-s—-l-flgsn"‘l} (@ > —3),
1

(13.10.9) 26) = o2 8(8‘2"1) ‘/t'jfz)dt (0> —1),
1

and so on. The formulae require modification when s = 1: thus in

(13.10.9) we must replace C(s)—s—l—i by y.
When s = 0 and s = —1, (13.10.7) and (13.10.8) give

; l_n_% - {(O), g m'—%n2_%n_é -> C(_l)’
and show incidentally that
(13.10.10) {0)=—3  {—1)=—%,
(13.10.11) 1414-14..=—3},  14243+4..=—% (R,0).
13.11. The case f(z) = log(z-}-¢) and Stirling’s theorem. We can
treat the function f(r) = 2-*logz similarly, and it is plain that the

results may be obtained from the corresponding results for z-¢ by formal
differentiation with respect to s. Thus, for example,

nl-slogn  nl-®

(A R

(13.11.1) %m-slogm—
1
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for o > —1. If we take s = 0 in (13.11.1) we obtain a formula for
logn! which embodies a form of Stirling’s theorem; but this case is so
important that it is better to treat it independently.
In order to obtain a general formula for log I'(x4-1), not restricted
to integral values of , we take
f@) =loga+c) (¢>—1), a=—c
and then write « for n--¢c. We thus obtain

(13.11.2)  logD(z+1) = 2 log(m+-c¢)+ log I'(1+4-¢)
(x—{-%)log r—x4 0+Sk(”) + By

where
(13.11.3) € =logI'(14-c)— (%—I—c)log(l-{—c)—}-l—l—c-——Sk(l)——Rk’l,
(13.11.4) 8 (n) = S (=1)2B, “ari,

(2r—1)2r

+ ! —Ok—
T % f it = O

In particular, taking k = 0,
(13.11.6) log I'(z+1)—(z+$)logz4-2 - C,

(13.11.5) Ry, =

(13.11.7) € = log T(14-c)— (3+c)log(1-+e)+1-+o+} f (ﬁ(t))z
Here C is prima facie a function C(c) of ¢. It is in fact independent of ¢,
but to prove this naturally demands a little more knowledge of the
properties of I'(2) than we have assumed so far in this chapter It follows,
for example, from Gauss’s formula

tne
ra nln
(+e) = I o @Fo)-(nto)
that log I'(n+1+c¢)—log ['(n+1)—clogn — 0

and so, after (13.11.6),
0(c)—0(0) = lim{elogn—(n+oc+3)log (n+-¢)+ (n+}log n-t-c} = 0.
Thus C is independent of ¢ and is defined by (13.11.7) for any c.
There are many ways of evaluating C in finite terms. The most
common is by means of ‘Wallis’s product’ for = (a corollary of the

product form of sinmz). A more natural method here is to use the
theory of {(s), since it follows from (13.11.1) that

(13.11.8) ¢ = —L(0).
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If we put s = 14-¢ in Riemann’s functional equation (2.2.2), expand
both sides in powers of ¢, and equate the first coefficients, we find that
{(0) = —%, in agreement with (13.10.10), and {'(0) = —3log2x; so
that
(13.11.9) C = }log 2m,
and we obtain the ordinary form of Stirling’s theorem.

We can also calculate C from (13.11.7). If, for example, we take
¢ = 0, it gives

g n+1
13.11.10) € =141 (LD g 141 (t—n)t—n—1) ,
2 2 2 e
1 n

= 1-|- Z {1—(n+§)log7%l}.

n+ 1 12dt
Now 14+ (n+{)log—— =2 f Ry
and, substituting and summing under the integral sign, we obtain
i
. 208
= 1— dt = %1 .
c f ( }—tz) $log 2n
0
In conclusion we note the formulae
(13.11.11) log l+log2+ = %log 2% (R,0),
- B,
(18.11.12) 3log2m = 1— +3 2 — et

the last series being semi-convergent.

13.12. Generalization of the formulae. There is a generalization
of the Euler-Maclaurin formula important in the calculus of finite
differences. Its formal genesis is as follows. If we write

Df) = f'(x),  e*f(@) = fl@)+hf'(@)+3h%" (@) +... = flz+-h),
and interpret D-Yf(x) as F(x), then
fety)tfety+ 1)+ Hf@+y+r—2)
= {eVD+ ew+0D | | eWwn-2D} f(x)

—(p+u— 1>+Bz(-”’D+ Jetn—n)—fe)
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and we may write this as ®(n)—®(1), where
B '
Om) = Fe+n—1)+y—Bfe+o—1)+ 220 @ pn—1)+..
In particular, if we take z = 1, we obtain

(13.12.1)  fly+1)+f@+2)+F - +fy+n—1)
= P+ Co)+y—Df ) + 220 f ) .

where
(13.12.2) C(y) = —F(l)—(y——%)f(l)——Bz y)f (1)—

When y = 0, these formulae agree with those of §§ 13.5-6.
If, for example, f(z) = logz and @ = 0, we obtain

(13.12.3)
log T'(n+y) = nlogn—n+(y—3)logn4-C+ 2(y)1——"@l+...,

where
By(y) 3(!/)
(13.12.4) C =log I(1+4y)+1 -2 4250~
and comparison of (13.12.3) with Stirling’s theorem shows that
C = %log 2m,

independently of y. If we take y = 0, or differentiate with respect to
y and then take y = 0, we obtain (13.11.12) and (13.10.6).

All this analysis is formal. We may discuss the formulae by the
methods of §§13.5-7, or by the complex method developed in §13.14.
It will be observed that we are led to an asymptotic expansion of
log I'(n-+y) in powers of n~1, while the argument of § 13.11 leads to one
in powers of (n—1+y)L.

13.13. Other formulae for C. There are other formulae for C which
are interesting in themselves and will lead us naturally to the analysis
of §13.14.

We observe first that, for # > 0,

) @ 1
[ atwretos =2 [ gt —gesodt = 23 [ w—peteman
1 1 19

since ¢ = 24, —1 and ¢, is w—n in (n,n41). A simple calculation
then gives

- " %41 1 1
(13.13.1)  J(t) =J.z,b2(w)e-‘ dw=_t.2—(?_§_zt__l),
1



13.13] THE EULER-MACLAURIN SUM FORMULA 337

Suppose now that
(18.13.2) flx) = f e dy(t)

0
is absolutely convergent for > 0. Then

(13.13.3) [ hp()f"(w)dw = [ o) duw [ et dx(2)
1 1 0

_ of £I(1) dx(t) = —2 f e4(gi—1—%+§)dx<t),

by (13.13.1). Also (13.6.1) and (13.6.2) hold for k¥ > 0, so that we may
use (13.6.4) with £ = 0. We thus obtain

1

Fof 1 1
(13139) 0= —F+H+ [ (-1 +5)ax.
For example, we may take °
51 i, . . —_—1—_
dX=P—(§dt’ fx) =z, o >0, a=1, C ={(s) P

(as in §13.10), when we obtain

o) =+ +P(S) f ( —+3 )ts—ldt

(a formula actually valid for ¢ > —1) When s = 1, this gives

)dt _ 1+J'e4(____)dt
The argument leading to (13.13.4) is valid Whenever
@) = — [te=tdx()
0

is absolutely convergent for x > 1, even if (13.13.2) does not hold. Thus
the assumption dy = t-le~%dt,wherec > —1, gives f"(x) = (x-+c)~2and

¢'2 w) - g
ey ™= 77 .[ e x(g‘:i l )
0
Combining thls with (13.11.7) and (13.11.9), we find
}log 27 = log I'(14-¢)—(3+c)log(14-c)+14c—

1, 1\dt
— ~(1+c)
fe ( t+2)t'

(13.13.5) 'y=%+ fﬂ(e,
0

4780
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In particular, for ¢ = 0,

11 1\dt
13.13.6 =1— ] [ Wl s
( ) 3log2n =1 fe (e‘—l t+2)t .
0
Also, differentiating with respect to ¢, and replacing ¢ by c—1, we obtain
I"(14c) f I
13.13.7 —_ = of _—
( ) loge—ri1g =) ¢ (e‘-——l t) at
0

for ¢ > 0 (or complex ¢ with Re > 0).

There is another set of formulae, of a different type, due to Abel and
Plana. Returning to (13.13.2) we observe that f(z) is an analytic
function of z regular for z = Rz > 0, and that

1 . . .
(18.13.8) g(¢,n) = o {fE+im)—fE—in} = — [ e¥sinm dx(0)
for £ > 0.f Also, using a familiar formula,
q(é, 77) ot sin nt 1 af 1 1.1
& o=~ [evax [ qothian — —5 [ et —i43)
Taking ¢ = 1 and using (13.13.4), we find

(13.13.9) C = __F(1)+%f(1)_%ff(l-}—z;?m—f(ll-w)

In particular we have

(13.13.10)  Z(s) = __-_I_

f(l—!—m) Bl S

e2m 1

first for ¢ > 0 and then, by analytic continuation, for all s;

—iyo [ 91
(13.13.11) Y= %+2J>1+7I2e2m7_; ’
(13.13.12) 3log 27 = 1—2farctanﬂd

The last formula corresponds to the case f(x) = logx, when f(x) is not
actually defined by (13.13.2).

In the next section we shall give a proof of (13.13.9) which does not
depend on any special integral representation of f(x). It is plain that
the truth of the formula must depend upon assumptions about the
behaviour of f(x) in the complex plane; and this leads us, in the next
section, to investigate the Euler-Maclaurin formula from a quite

1 We return here to the convention that integrals without limits are over (0, o).
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different point of view. It will, however, be useful to make one pre-
liminary remark of a formal character. If we write

(2r—1)
%{f(1+in)—f(1—in)} =2> (_-1)r—1{2r (11){ 1,

insert this expansion in (13.13.9), integrate formally term by term, and
observe that

.,’21'—1 _ 5'
(13.13.13) J‘ m d"] = 1r ’

then we are led back to the series
¢ = —Fy+if)— 5 ST ey,
thus connecting (13.13.9) with our earlier analysis.

13.14. Investigation of the Euler-Maclaurin formula by com-
plex integration. We suppose now that f(2) is an analytic function of
2 = x4y, regular for x > ¢, where ¢ < 1, and that
(13.14.1) 2| f(z+iy)| — O,
when |y| - c0, uniformly in any finite interval (£, X) of . We denote
the rectangle defined by = 1, # = n, and y = £ Y, with semicircular
indentations of radius p round 1 and =, by O(p); the indentations them-
selves by I(p); and define C as the limit of C(p)—I(p) when p - 0, and
C, and C, as the parts of C above and below the real axis.

By Cauchy’s theorem

% f @ cot wzf(2) dz =m2'lf (m):
¢

here the integrals along the vertical sides of O are principal values, and
the dash implies that the extreme terms of the sum are affected by a
factor 3. Also

[nif@)dz = —mi [ f@)de, [ {—mifz)}dz = —mi f fl)dw
(231 1 Cs 1
and so

(13142) 3 fom) = f 1@ do + 1)+ ) + 5 j W) &,
where

¥(z) = cotmzt+1 = 2 ; 2¢

1_6_2m’ Sb(z) = cot’ﬂz-—'z = e_—_ﬂm‘z__l

on C; and C, respectively.
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It follows from (13.14.1) that the integrals along the horizontal sides
of C tend to 0 when Y — c0; so that (13.14.2) reduces to

n n

(13.14.3) mélf(m)— ff(x) dz —%f(n)—3f(1) = Qn)—Q(1),

c+'ioo
where Qc) = — f P(2)f(2) dz,

c—1i®©
and both Q(n) and @(1) are principal values, at z =7 and z =1
respectively. Also

Wiy = 2 @>0), g @y <0),
1—e2m¥ e2mivi__ ]

and y(n--iy) has the same values. Hence, inserting these values in
Q(n) and @Q(1), and associating together the contributions of positive
and negative y, we obtain

. q(1,) _ q(n, y)
(13.14.4) Q) =2 | S5 dy, Q) =2 1%

where g(x, y) is defined by (13.13.8). The integrals now converge in the
ordinary sense, since g(z,¥) is O(ly|) for small y. If f is real for real z,
then g(z,y) is the imaginary part of f.

We now expand ¢(n,y) by Taylor’s theorem, in the form

(13.14.5)
an,9) = 47" 0) =L )t (— 1 S gl 9)

substitute in the integral for Q(n), and use (13.13.13). We thus obtain

n n k
(13.14.6) 3 f(m)— j fl@) de —}f(m)— Z (—1y-1. B Gl )

2nY __

= }f(1)—2 f LLY) 4y -+ By,

Rk(n) =9 Gor+1(n,Y) d

where 1 Y-

The last series on the left of (13.14.6) is the Si(n) of §13.5. If we can
show that R,(n) — 0 when n — co, then we shall obtain

mzlf(m)— ff(x)dx—%f(n)—sk(n) > %f(l)_% £ H?zly fll—zy)dy
1

in agreement with (13.13.9), since F(1) is 0 when a = 1. This is the
Abel-Plana formula.
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In order to prove that R,(n) > 0, we must naturally impose much
severer restrictions on f(z). We suppose that

(13.14.7) FOz) = O(|z|*")

for a fixed ¢ and each r, when z — o0 in the half-plane z > ¢. We shall
also suppose that 2k41 > ¢. Then, using (13.14.5) and the formula

0) = 9(0)+yg’ (O .. Lo ga(0) 4L j (1 — ) g @ () s,

(2’0)'
with ¢(n,y) for g(y), we find that

(2k>'

1
st ) = L [ (L { 0 i)y D i) du.
0

It follows from (13.14.7), since |n-+iy| > n and 2k+1 > ¢, that
Qa+1(n, y) = O(|y[**+1ne-2-1)

uniformly in y, and so that

y*H
Ry(n) = O(ne-2-1) f dy = O(ne-%-1) - 0,

e?mv__1

when 7 — c0; and this completes the proof.

The conditions are satisfied, for example, if f(x) = x4 or f(x) = log z,
and we thus recover many of the results of §§13.10~13. We naturally
cannot expect to find in this way such precise results as those of § 13.7.

13.15. Summability of the Euler-Maclaurin series. We shall
call

(18.15.1) &(n) = /() + 3 W+0— 22"+ 0+... = S,
where
(13.15.2)

@y = 3f(n), Gy, = (= 1) 'f(z"l)(n) (r=1), a,=0 (r>=1),

the ‘Euler-Maclaurin series’ of f(n). We have seen that it is in certain -
circumstances an asymptotic series for

(13.153)  ®(n) = f()+f(@)+...+f(n)— [ flz)dz—C,

and the question remains whether it is summable by any of the methods
of earlier chapters. The series usually diverges rapidly, so that a rather
drastic method of summation will be needed. We shall show that in
certain cases, including those which we have considered particularly in
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the preceding sections, the series is summable by the method (B*) of
§8.11.
We suppose first that 0 <8 <1, s > 0, and

(13.15.4) f(z) = O(lz]-*)
uniformly in the half-strip > 8. Then

fer-D(n) = (2r—1)! flu)

2t (u—mn)*
¢
where C is the line (8+ioo, 8—100); and hence

(13.15.5) a(t) = Za = }f(n )+1'2|tf (n)_3'4'tsfﬂr(n)+
[

fo 1, B, ¢ Bs( ! )8+...}du
u

u—n\2" 20 u—n 4!

1 1 1 w
I () 2= g [ F0( )
C

where w = t/(n—wu). The integration term by term is justified for small
t, since [w| < |t1/<n—8),

1
T 9m

| ~

Qe Qe
=
&

|w|+ ol —llm—%cot%lwl

fw)

is bounded for |w| < m, and
|du| < co.
u

[l

Thus the final formula (13.15.5) is true for small ¢.
Let us assume provisionally that the function a(t) defined by the

series is equal to 1 w
— —1
P f f (“)(ew- 1 ) du
c

for all positive . Then

fowna- [ ey

c

2mjfu){fe:(

) du} dt
L
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provided that we may invert the integrations, as we also assume
provisionally. The inner integral here is

where w=

say, and |¢| < }=. Applying Cauchy’s theorem to the sector bounded
by the real axis of ¢ and the radius arg? = —¢, we obtain

peid e“ﬁ 1 1
—re~ —ip -Rlw
J = f e (e )e dr = f e (e-———R i R) dR

—R{n— 1 1 I'(1+n—u)
— R(n—u —
f , )(eR 1_._) dR = log(n—u) @ )’

by (13.13.7), the logarithm having the value which is real when « = 3.

Thus
(13.15.6) f ela(t) dt = % ff (“){IOg(”_”)_Ig‘_((%H} du
v o

It follows (apart from the justification of our provisional assump-
tions) that S(n) is summable (B*) to this sum, and that S(n)—&(1)
is summable (B*) to sum

n—u_ I"(l4+n—wu) I'(2—wu)
“’ff(“){ T—u TOtn— u)+r(2—u)}d“

1 n—u 1 1 1 1
= om Off(“)k’g = ™~ 2m ff(“)(2—u+ =T ‘"+n—u) du
C

= F@HGI+ )+ 5 f fllog 2= du.

¢
Finally,

o | FooR T du = o f f){log(n—u)—log(l—uw)} du,
C

where C’ is a lacet formed by the line (5,n) taken twice in opposite
directions, the singularities at » = 1 and u = n being avoided in the
usual way by semicircles whose radius is made to tend to zero. The
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value of i3{log(n—wu)—log(1—wu)} is 0 on (8,1), —=s on (1,n), = on
(n,1), and 0 on (1,8), and so
du = — Jf u) du,

1

f fllog 2=
(13.15.7)  &(m)—&(1) = f)+fB)+...-f(n)— [ f() du,

(13.15.8)  &(n) = f()+£(2)+-..+f)— [ flw) du —C = D(m),

the series being summable (B*), and C = f(1)— &(1) being the Euler-
Maclaurin constant of f(z) for ¢ = 1.}
It remains to justify our provisional assumptions. For this it is
sufficient to prove (a) that, if 0 < ¢, < ¢,, the integral
I=1I(t) =1 _f(ﬂ( 1 —%)d“ (w:__t_)

2m | n—u\ew—1 n—u
o]

converges uniformly in some region including the stretch (¢y,%,) of the
real axis in the plane of ¢; and (b) that the double integral
_l| dt
w

K=Cf|f(u)||du|fe_t‘f ldt:cl—l;bfgt—;lldufe—t

is convérgent. It is plain, first, that the conditions will be satisfied if
1 1 1 1

- i

(13.15.9)

< H(1+1),

3

—1

respectively, for all relevant values of ¢ and ». For then I and K are
majorized by multiples of

| f(w)] |f ()] - If ()]
(13.15.10) | L%y, | Mgy [ (14-t)etdt =2 | - | dul,
Jln—ul Jln—ul “] Cfrn—ul

respectively. It is also plainly sufficient to consider the upper half of C.
(@) Suppose that t = re®, where

O<r<r<r, 6] <«

The first condition (13.15.9) is certainly satisfied if one or other of the
conditions

(13.15.11) lwl <A < 27, P=Rw=£&>0

T The formulae agree with (13.6.3)—(13.6.5) for @ = 1, ¥ = o0, since then F(l) =0
-and }f(n)+Sk(n) becomes S(n).
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is satisfied for some ) and £ and all ¢ and » in question. If u = 841y,
where y = (n—38)tan¢ > 0, then 0 < ¢ < = and

we ! retd __Teosé 4 i),
T n—b—iy (n—8)(1—itang) n—?d
| = rcosscﬁ, rcos¢cos(0—|—¢)

If ¢ > {7—2a, cos¢ < sin 2w, and

fw} < 17’-2—— sin 2¢ = A.

3
Ifo<¢ < $r—20 cos(0+¢) > sinw, cos¢$ > sin 2«, and

p = sin a8in 2o = £.

—8

If we choose « 80 that A << 2, then one or other of (13.15.11) is satisfied
for all relevant ¢ and u.

(b) In this case ¢ is real and positive, and the second condition
(13.15.9) is satisfied if one or other of

(13.15.12) w| <A< 2m, Rw=Et (E>0)

is true for the relevant ¢ and .

Now either (i) £ < A|n—u|, where 0 << A < 27, in which case |w]| < A
or (ii) £ > A|lr—wu/, in which case
t ) — t(n—3) > M(n—-3) ¢

n—8—1y |n—ul|? t ot

§Rw=?t(

We have thus proved

THEOREM 246. If f(2) is regular, and O(|z|~#), where s > 0, in the half
plane x = Rz > 6, where & < 1, then the Euler-Maclaurin series of
f(z) s summable (B*), to the sum (13.15. 3)' in particular

C= —F(l)-l-%f(l)— f(1)+0+ /(1) +0—... (B¥).
13.16. Additional remarks. (1) We have supposed that f(z) satisfies
(13.15.4), so that the integrals (13.15.10) are convergent. If we suppose only that
|f(2)] = O(|2]¢), for some ¢, then

[n—ul*

will be convergent for » > (c+ 1), and we shall still be able to prove the summa.-
bility of
Sn) = 040440+ 02

(2r )'

(=1r

B, fr-0n) + 045 Braa

FEm)+....
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We can then pass to G(n) by adding on a finite number of terms, and the
substance of our conclusions will be unaffected. Thus, if f(u) = =, where
—1 < 8 < 0, or f(u) = logu, we can take r = 1.

(2) We have used the (B*) method, which involves the notion of the analytic
continuation of a(¢). If (as actually happens in the most important cases) a(?) is
regular for Rz > 0, then the positive axis of ¢ is included in the Borel polygon
of a(t), and the series for g(t) is summable (B). In this case we may say that
&(n) is summable (B2), i.e. by & repeated application of Borel’s integral definition.

Suppose, for example, that f(z) satisfies (13.15.4) uniformly in any sector
issuing from & and excluding the negative axis. Then it is not difficult to show,
by a modification of the analysis of §13.15, that a(t) is regular for Rt > 0, so
that &(n) is summable (B2). We can also combine this remark with the
generalization indicated under (1). In particular, the series

(13.16.1) i R TN B
B. B, B.
(13.16.2) l—f1§+0+é.—1+0_'5,-:s+‘"

are summable (B?), to sums y and 3 log 27 respectively.
It is easy to verify these assertions directly. For example, for (13.16.1),
1, B,, B, By, _l(t )
the series being convergent for 0 < ¢ < 27 and suinmable (B) for all positive #;
and Ie—‘a(t) converges to y, by (13.13.5).

13.17. The R definition of the sum of a divergent series. The formulae
(13.10.11) give examples of the ‘R’ summability of divergent series of positive
terms. We can use such equations, as did Euler and Ramanujan, to define the
sums of series, such as 1—1+1—..., of the more usual type; but the definitions
which result have a narrow range and demand great caution in their application.

Thus it is natural, after (13.10.11), to write
(13.17.1) 244464... = 2(1+2+3+...) = 2(—&) = —},

(13.17.2) 14+-3+5+... = 2+4+4+64+...—(14+14+14+..)= —3+3 =1,

(13.17.3)  14+2+48+4+...= (1+3+..)+(2+4+..) =3} =1},

(13.17.4) 1—243—4+4..=(1+3+...)—(2+4+...) = }+3 = 3.

The last of these equations contradicts (1.2.17); and the sum to be assigned
naturally to 14+2+3+-..., by Euler’s principle of § 1.3, is either oo, ‘the value of
(1—z)2 for = 1°, or —%, the value of {(8) = S n*fors = —1.

The —% and } in (13.17.1) and (13.17.2) are in fact the C of f(x) = 2x and
f(@) = 22— 1 (witha = 0). But the 143+ ...and 2+4+...in (13.17.3)and (13.17.4)
cannot be interpreted similarly. They must be regarded rather as 140-43-+0+4...
and 0424 0+44+...; and then there is no f(z), of a sufficiently regular type, which
assumes the appropriate values. Actually, if we wish our results to be consistent,
we must interpret 14-0-+4+3+4+0+4... and 0+2404-44... as the values, when
s = —1, of

14304, = (1—2-%){(s), 2-°+4~5+.. = 2-8{(s).

These values are (—1)(—3%) = 7% and 2(—3%) = —}; and &+ (—4%)is —Fz or }.
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The sum of log1—log24log3—..., according to these principles, will be the
value of
1-*log 1—2-tlog 2+3—*log 3—... = (22— 1){(s)—2'*log 2.{(s)

for s = 0, in agreement with the (4, A) sum of § 4.7, with A, = log(n+1). Thus
we obtain

(13.17.5) logl—log2+log3—... = {/(0)—2log2.L(0) = —}log}m.
It is easily verified that this is also the (C, 1) sum of the series. For here
1.3..(2p—1) 2p!

2.4..2p = logznp(p!)z= —3logp—4logm+o(l),

83p_1 = 8gp+log2p = }logp—3logm+log2-+o(1),

8gp = log

and so

8o+8y+ . t80
Ry R — —3}login.

NOTES ON CHAPTER XIII

§13.1. This chapter does not profess to contain a systematic study of the
Euler-Maclaurin formula and its generalizations, such as will be found in books
on the calculus of finite differences. We concentrate our attention on those
aspects of the formula most closely connected with the subject-matter of earlier
chapters. We have naturally made considerable use of the principal text-books,
in particular

Jordan, Calculus of finite differences (Budapest, 1939);

Milne-Thomson, The calculus of finite differences (London, 1933);

Nérlund, Vorlesungen diber Differenzrechnung (Berlin, 1924);

Steffensen, Interpolation (Baltimore, 1927);

Whittaker and Robinson, The calculus of observations (London, 1924);

and of the shorter accounts in Bromwich, Ford, and Lindel6f. The only part
of the chapter with any particular novelty of substance is §§13.15-16, on the
summability of the series.

We have not attempted to give detailed references for the many special
formulae which occur, particularly those connected with the zeta and gamma
functions.

§13.2. The notations of different writers vary considerably. Our B, and ¢,(x)
are those used by Bromwich and by Whittaker and Robinson, and our B,(x)
that of Norlund. But Norlund writes

t "
é—1 2 B"m

so that his B, ,, for m > 0, is 0, and his B,, is our (—1)y»1B,,; and he is
followed by Jordan and Milne-Thomson. This notation has the advantage that
B,(0) = B,,.

§13.5. The formula was found independently by Euler, Comm. Petropol. 6
(1732--3, published in 1738), 68-97, Opera (1), 15, 42-72, and Maclaurin, Treatise
of fluxions (1742), 672. See Cantor’s Héistory, vol. 3, 663, and Enzykl. d. Math.
Wiss., IA3 (§38) and IE (§11). The first serious discussion of the remainder
was that of Poisson, Mémoires de I’ Institut, 6 (1823), 571-602, and the first quite
rigorous one that of Jacobi, JM, 12 (1834), 263-72 (Werke, 6, 64-75).
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§13.6. The nature of Ramanujan’s work on divergent series has to be inferred
from passages in his letters and note-books.

§13.8. Poisson, L.c. under §13.5.

§13.9. Fourier, l.c. under § 2.8.

§§13.10-11. A good many of the formulae here and in §13.13 will be found in
Bromwich, Appendix III.

The most direct and elementary method for the analytic continuation of {(s)
is that set out in Landau, Handbuch, 270-2: the ideas underlying the argument
are similar to those used here, but it is arranged inductively. The methods of
Riemann, of which Landau also gives an account, are more elegant and more
familiar.

For the last method of calculation of €' in § 13.11 see Bromwich, MM, 36 (1907),
81-5.

§13.12. For details see Milne-Thomson, ch. 8, or Nérlund, ch. 3.

§13.14. The argument is substantially that of Ford and Lindel6f.

§§13.15-16. The main results of these sections seem to be new. There is a
paper by Barnes, QJM, 35 (1904), 175-88, in which he considers the summability
of the series (in the more general form of §13.12) by methods of the Borel type;
but the analysis is unconvineing.

It is easily verified that the series is convergent if f(x) is an integral function
of order 1 and type less than 27.

§13.17. For the (C, 1) sum of log 1—log 2+1log 3—... see Bromwich (ed. 1), 351.



APPENDIX I

On the evaluation of certain definite integrals by means
of divergent series

1. In §1.2 we gave a number of examples of the use of divergent
series in formal calculations, mainly of the values of definite integrals.
We show here how these and similar calculations may be justified.

We observe first that all the ordinary theorems concerning the con-
tinuity, integration, or differentiation of the sums of convergent series
have analogues for any linear method of summation T defined by
(3.1.3) or (3.1.4). We state the theorems for the method (3.1.3), and
we confine ourselves to the most obvious analogues of classical tests,
in which the functions concerned are continuous and the series uni-
formly convergent. In what follows Y a,(x) is summable (T) to s(z),

ie. 8,(x) = 3 a,(z) - s(z) (T).
m=0

THEOREM 247. If (i) a,(x) is continuous in {a,b), for each n;t

(i) £,,(x) = 3 € Sa(@) 18 uniformly convergent in {a,bd, for each m;

(iii) > a,(x) is uniformly summable in {a,b) to sum s(z);
then s(x) is continuous in {a,b>.

For ¢,,(x) is continuous for each m, by (ii), and the conclusion follows
from (iii). If T is row-finite, as, for example, when it is (C, k), then
condition (ii) may be omitted.

THEOREM 248. Under the same conditions

b b
S f a,(x)de = f s()dz (T).

For the left-hand side is, by definition,
b

b b

lim Y ¢,,, f 8,(x)dx = lim f D Conn Sp(®) dz = lim f t() de,
m a m a m a

and the conclusion again follows from (iii).

THEOREM 249. If (i) a,(x) is continuous in {a,bd,} for each n;
(i) 3 €y Sul(®) s, for each m, uniformly convergent in {a,b>;
(iii) Y a,(x) is uniformly summable in {a,b);
(iv) 3 a,(x) s summable in {a,b), to s(x);
then §'(x) exists in the interval a < x < b, and is continuous, and
S d(@) = ¢'(z) (T).

t With the usual gloss (assertion of right-hand or left-hand continuity only) at the
ends of the interval. 1 With the gloss corresponding to that on Theorem 247,
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This is a trivial corollary of Theorems 247 and 248. For f(x), the sum
of ¥ a,(x), is continuous in {a, b), and

s(x)—s(a) = 3 {a,(@)—a, (@)} = 3 [ any)dy = [ 3 du)dy = [ fv)dy,

all sums being taken in the T sense. It follows that s'(x) = f(x) in the
interval @ < = < b.

2. We pass to the problems (1), (2), (3), (5), and (6) of §1.2.1 If we
use the C definitions, then the transformations in (1) and (2) are covered
by Theorems 247 and 249, all the differentiated series being uniformly
summable (C, 1), for sufficiently large I, in appropriate intervals: alterna-
tively, we may use the A definition. The first integration in (3) is covered
by Theorem 248.

The argument in (5) needs more consideration. We suppose that
0 <¢ <a. Then

cosmb—cosm¢ _ o <+ sinng .
cosf—cos¢p 22 sin ¢ cosné(cosmb—cosme) = 3 a, (C,1),

the sums being over (1,c0), and 0 < 8§ <, 6 = ¢. The series 3 a,, is
uniformly summable in {0, ¢—e)> and {¢-+-¢,7), and so

e 30 [T o= (- o S k)
=

The right-hand side tends to the integral (1.2.26) when ¢ - 0, and it
is therefore sufficient to prove that

N n $+e
lim (1————) f a, d0
N->oon=1 .N+1 "

¢—¢
exists for each € and tends to 0 with . A fortiors, it is sufficient to

prove that
w Pte

S [ a,do
S

n=1

1 For (4), see the notes on Ch. I.
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has these properties. Now it is easily verified that

d+e
a,df =2 sin n¢{sxn(m n)e cos(m—n)d -+ sin(m+-n)e cos(m--n)p—
s sing | m—n m-n
—€
—2 qosmgécoanSEE;E},
where sin(m—n)e is to be interpreted as e when m = »; and m is fixed.

It is therefore sufficient to show that the series

4= i sin né cos(n—m)d M,
n=m-+1
B= i sinng cos(m—-n)d Sill:;n__%ble’

n=-m+1
C = —2cosm¢ Z sin ng cos nd
1

are convergent (as is obvious), and that their sum tends to 0 with e.}
But

sin ne

@

Z n(m--k) cos kd sm ke B = 2 sin(k—m) cos kd Sir;cke ,

sin ke

A+ B = 2cosm¢z sin k¢ cos kd
and so A+B+C = 0.
Passing to (6) of §1.2, we select the formula (1.2.28). Since
sin 20+-sin 46--sin 604-... = }cotd (C, 1)
uniformly in (e, {#), we have

= —C,

N> <

N 3 in
. n . _ 1
lim (1 “N‘Ii) f 8sin2n0df — 1 f@cote do,
n=1 € €
and it is enough to prove that

N €
&Fl(l_m)fosmznodo»o

when € - 0; a fortiori, to prove that

ij()sin2n0d0—>0.

t We have rejected the terms corresponding to n = 1, 2,...,m from A, and added those
corresponding to n = 0, —1, ... —m+1 to B. Obviously these all tend to zero.
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But the series here is

1 . i
Z e (sin 2me —2ne cos 2ne) = i 2 smn22ne 4+ 3elog(2sine),

and plainly tends to 0.
Many other integrals may be evaluated similarly. We may mention

0

FOm—0) , = 1 F(Om—O) 1
sin @ d0_82(2n+1)3’ f{ sin 8 } da“ﬁ"Zﬁ’
0

1

0
bsecodd = —a > f _ Osind 44 1
! sec Z 1 cosd)—cosﬁde 27 log(2 cos 3¢).
0

The last two integrals are principal values, and 0 < ¢ <.

3. The formulae of § 2 may be derived, in much more general forms,
from the theory of the ‘conjugate series’ of Fourier series. If

£(0) ~ dag+ 3 (a, cosnb+b,sinnf) = 344(6)+ 3 4,(),
then the conjugate series is
3 (b, cos nf—a,, sinnd) = 3, B,(0).
It is familiar that

(3.1) ZB”(0)=§1; f F(t)cob 3(i—0) dt

under appropriate conditions, the integral being a principal value at
t — 6. For example, the series converges to this value if the integral
exists and f(¢) is of bounded variation in an interval round ¢ = 6. But
(8.1) is the result of writing

} cot $(t—0) = sin(t—0)+sin 2(¢—0)+...,
and integrating term by term after multiplication by f(¢). In particular

- f f(tyoot 3t dt = 3 b,

Formulae with divergent integrals

4. We now consider the formulae of §1.5. There are theorems for
divergent integrals corresponding to those of §1, which we need not
state formally. We can verify at once that the integrals (1.5.8) and
(1.5.9) are summable (A) to the values stated, and uniformly in any
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interval (mg, m,) of positive values. They are also summable (C, k) for
sufficiently large k, since it is easy to prove that

[ akeviedy = T{k-+De-¥esdmia =+t (C,1)

for k> —1,a > 0,1 > k. In fact, if we integrate

f (1 —_ -z—)lz"‘e—‘"'Z dz
X

round the rectangle (0, X, X-—i00, —ic0), with suitable indentations at
0 and X, we obtain

X
f 1-2 lxke-“"“dx = g~ ile+Dmi l—j—ig—/ ly’“e"'i/ dy +
X X
0
e+ Dmig-aiX X - f (X —iy)re-av dy.
The first term on the right tends to
-y j yre-wv dy = D(k+1)e-i+Dmig—k-1,

and the second to 0, when X — c0.

We now prove two theorems concerning the formulae (1.5.10) and
(1.5.11).

TaroreM 250. If (i) F(z) = 3 a,2", (i) m >0, p > —1,

(iii) 3 n'a,z™ has a radius of convergence B > m™1,

(iv) [ e-trsmdzgn F(x)da is convergent for 7> 0, then

(4.1) f ape-mizP(z)de = 3 T(n-pt-1)e-intpsdmip-n-p-ig,

the integral being an A integral. We may replace condition (iii) by etther
of the more general conditions

(iil) 3 nljanlm= < oo,

(iii") ¥ nlvna,(im)-" is convergent.

THEOREM 251. If (i) $(x) = O(e®) for every € > 0, so that
r) = [ ed(z)de

is convergent for > 0,
(i) ¥(7) ts regular for |7| < m,
(iii) I n!a, 2™ has a radius of convergence R >m,
(iv) [ e*$(@)F(x)dx is convergent for > 0, then

(42) f (@) Fx)dx = 3 a, j ap(x) dz,

where F(x) = 3 a,a", all the integrals being A integrals.
4780 AR
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If ¢(x) = are~™=, then y(r) = I'(u+1)(r+mi)-*-1, and conditions (i)
and (ii) are satisfied. Thus Theorem 251 includes the main clause of
Theorem 250.

Proof of Theorem 250. The equations
(4.3) x(r) = f e~"2d(z) F(x) do = f e~r+miegn F(x) da

= 2 a, f e—THmOTpntp g — Z I'n+u+ 1)a, (r4-mi)-n-#-1
are certainly true if
[ e 3 layjaminde = 3 Din-tut-Djaylr-o-4- < oo,

and therefore for 7 > m; and the final series in (4.3) is uniformly con-
vergent in any interval 0 < 7 <{ 7,. Hence x(r) is an analytic function
of 7 regular for » > 0, and

x(r) > 3 D(ntpt 1), (mi) "2 = 3 D(nt -t D)e-tnsu+mia,, m-n-s-1
when 7 — 0. This is (4.1). It is plain that the proof is equally valid

under condition (iii’).
As regards (iii”), we have

S Dt pt-1)ap(r-+miym#-t = 3 Tnd-pt Da, (mi)-n-s-tgesns,

ma .
where 2 = = X1
T+ma Y
m? 72 72 ™ T

1—z

v= 724m?’ T me “m
when 7 > 0. Thus 1—x ~ y»?, and z > 1 along a path having contact
of the first order with the unit circle. It is knownt that if f(z) = 3 ¢, 2"
and ) vnc, is convergent, then f(z) -3 ¢, when z - 1 along such a
path, and our conclusion follows.

Proof of Theorem 251. We have |¢(x)| < He for any positive ¢ and
an appropriate H; and so

[ e™19@)| 3 laylende < H 3 |a,| [ e-r-wanda

= H Y nlla,|(t—e)™"1 < o0
if r—e > R-L. It follows that

(44) [ @) F@)dz = 3 a, [ e=d(@larde = 3 (—1)a, ()
if 7 > m.

_———~ —
72+m2 m2’ y

t See Hardy and Littlewood, PLMS (2), 11 (1912), 411-78 (475, Th. 48).
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If 7 > 0, then y)(u) is regular inside a circle with centre » = = and
radius ,/(m?+72); and so, by Cauchy’s inequality,

u n!M(n)
lm(r)| < e —
for any 5 > 0 and a corresponding M (). Thus
3 lal4e)| < M) 3, ol
Since m > R-1, we can choose % so that /(m?+72)—=n > R-! through-
out any interval 0 < = < 7, of 7; and so the series on the right of (4.4.)
is uniformly convergent in this interval. It follows that

x(7) = j e-p(x) F (x) da
is regular for Rr > 0, and that
J‘ e 2p(x) F(x)de > > (—1)"a, $™(0) = > a, hm f e~ (x)x" dx
when 7> 0. This is (4.2).

5. Examples. (i) To illustrate Theorem 250, we take
F(z) = Jo(x)

| _ N (= 1)kt (|2 R 13.(2k—1) o
Inlaan =3 T \2 =2
(so that B = 1), and p = 0. We obtain

fJo(x)cosmx dr = 04+040+... =

. 1 1.3 1 1
J.Jo(x)smmxdx —_+2m3+2 4m5+ \W;—l)

for m > 1. Both equations are false for m < 1, the values of the
integrals being (1—m?2)~* and 0.t
(ii) We may illustrate Theorem 251 by the integral

I(c) = f J (@), .4 (cz) de,

where ¢ > 0, « > —1. We observe first that

_ 2+ (v+4-3)
5.1 TLw+1 _ -t 2)
@) Jemniiayis = SR
for + > 0, v > —1;} from which it follows that
(5.2) f pHem] (o) dr = 0 (A)

1 Watson, 386. - 1 Ibid., 386,
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form = 0,1, 2,.... On the other hand

(5.3) f -1 (x)dx = 2-1T'(y) (A)
for v > 0.1
If ¢ < 1, we take
F(x) = =1, 4(ca) = aptayz®+..., (@) = x*1J,(2).

Then R = 1/c > 1, and () is regular for |7| << 1, by (5.1). The
conditions of Theorem 251 are satisfied, and
I(c) = 0+0+0+... = 0,
by (5.2). If, on the other hand, ¢ > 1, we take
F(x) = z~*J (x) = agt+ay2%+-..., o) = 2*J 4 (cx).
Then R = 1, and P(r) = f e x%J 4 (cx) dx
isregular for [7| < ¢.} The conditions of the theorem are again satisfied,

and
2—&6—01—1
I(c) = aofx“JaH(cx) dz +0+4-0+4... = Tatd) x%J () dx = ¢,
by (5.3). Thus I(c) = 0ifc < 1and I(c) =c*1ifc > 1.§
6. We conclude this appendix by considering some integrals which
combine some of the features of those of §2 and 4.

From tanz = 2(sin 22 —sin 42-}-sin 6x—...),

secx = 2(cos x— cos 3x-}cos bx—...),

we deduce formally

(6.1) ff(x)ta,nx dz = 2(vy—v+vg—...),
f fx)secx de = 2(uy—ugtu;—...),
where u, = f f(x)cosnx dx, v, = f J(x)sin nx dz.

The integrals on the left in (6.1) will usually be principal values at 4,
$m,... (and may require additional conventions); those on the right may
be convergent or divergent. Thus, if A > 0,

2 4
—Az -
(6.2) fe tanx de = 2(224{—)\2 42+A2+...),
A A
_Ax — R -
f e\ sec de = 2(12+,\2 32+A2+'")'

1 Watson, 391. The integral is convergent if 0 << » < 3.
1 ¢”(7) is an integral of the type (5.1).
§ Watson, 406. Our theorems do not yield the value of I(c) in the limiting casec = 1.
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in this case each u, or v, is convergent, and the integrals on the left
may be defined as limits of integrals over (0, X) when X —> o0 in a way
which avoids the poles appropriately. Or again

p 4
(6.3) fcos)\xtamx dr = 2(2%)\_2_12_—)@+...),

jsin/\xtanx dx = 0,
if A % 2n; and
(6.4) fcos)\xsecx dr=0

fsin/\msecx dx = —2(1—2—1—/\2—-52—17\—2-{-...),

if A # 2n+1. In this case the u, and v, are A integrals, and the
integrals on the left require an A convention in addition to the con-
ventions necessitated by the poles.

We consider these formulae a little more closely. We begin by
proving

TuEOREM 252. If f(x) is positive and tends steadily to 0 when x —> o,
f'(x) is continuous, and

© Nm
f f(@)tanz dxr = lim f flxanz de,
0 Vo

where the integral on the right is a principal value at m, §m,..., is con-
vergent, then

ff(x)tanx de = 2(ff(x)sin 2% dx — ff(x)sin«ix dx +)
We need two preliminary remarks.
(a) It follows by partial integrationt that
Nm Nm
f f@)tanz de = § f ' (x)log cos?x dux.
0 0

Since f'(x) < 0, logcos?r < 0, it is necessary and sufficient for con-
vergence that

f f'(@)log cos?x dx << co.

We may replace N7 by any sequence z,, which keeps a distance & away
from the poles of tanz.
(b) Since
1

Vy,, = ff(m)sin 2nx da = ——217& ff'(x)(l——cos 2nz)dx = 0(’_%),

t There is no real difficulty in the partial integration, in spite of the infinities of the
integrand. See Hardy, PLMS (1), 34 (1902), 17-40 (21).
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the series v,—v,+... will be convergent if it is summable (A). It is
therefore sufficient to prove that

2wy r2—v, 7+ ..) > % ff’(a:)log cos?x dx
(assumed finite) when r - 1. Now

v, —v, i) = 2 z (—1)n-1y2n ff(x)sin 2nx dx
1

o«

--3 (,,_1),,-1%‘ f £/ (@)(1—cos 2na) da,

1

and Z %f |f(x)|(1—cos 2nz) dx < 2 Z %nf |f' ()] dz <o

when » << 1. Hence

2 rt—uvy i) = — ff'( i( Dl (l cos 2nx) dx
1

= _—% J‘f’(x)log-l_*_—(lﬁ)i——-dx,

2r2cos 2z-+rt

and 1t is sufficient to prove that

J(r) = f f'(x)log (1+r%? dx — f f'(@)log cos*x dx

14 2r2cos 2x+r4
when r — 1. But it is easily verified that
14-72)2 1
0<1 ( <1
1 2 cos 2a 7t %8 Costx

for 0 < r < 1, cos?z # 0. It follows that J(r) converges uniformly for
0 < r < 1, and that J(r) - J(1). This proves Theorem 252. The con-
ditions are satisfied if f(z) = e-**, when we obtain the first equation
(6.2).

The proof of the second formula is similar.

To prove (6.3) we observe first that

j e~ log cos?x dx

converges, and represents a regular function of s, for Rs > 0. The
same is true of

f e*tanx de = —38 f e~5%]og cos*x d,

where the integral on the left is defined as under (a). Putting s = o412,
and making ¢ -> 0, we obtain (6.3). The formulae (6.4) may be proved
similarly.



APPENDIX II
The Fourier kernels of certain methods of summation
1. It is familiar that the summability of a Fourier series
Ya,+ Y (a, cosnb+-b, sinnf)
by a method T with
m =2 CmnS, (07 T(®) = X c,(®)s,]t
depends on the properties of the ‘kernel’
Eu) =" cnm’;{:—%%_” [or K@) = cafe )S‘gg’:;f)‘].

In particular, if T is a ‘regular K-method’, in the sense of Hardy and
Rogosinski,] i.e. if it is regular and

D nlCpyl <o [or D nle,(x)| < oo]

for each m [or x], then a necessary and sufficient condition for summa-
bility, to sum ¢, is that

f 9. K, (t) dt - 0 [or f 9.(t) K (z,t) dt—->0]

where 9.(t) = Hf(0+8)+f(0—t)—2c},
for any 8 > 0.§
Further, if we call the conditions

t
(L) g0—>0 (12) [gwdu=o@), (1.3) [ig(w)du=of)
0 0

ke, 1;, and L, respectively, then there are three fundamental theorems
concerning regular K-methods, due in essentials to Lebesgue. ||

A If
(1.4) f IK,.(t)] d¢ < H,
. 0

where H is independent of m, then k, is a sufficient condition for summa-
bility to c.

T We use 7 for the ¢ of § 3.1, ¢ being needed for other purposes.

1 Fourier series, ch. 5 (referred to as HR in what follows).

§ HR, Theorem 69.

{| See HR, Theorems 70, 71, 72. In Theorem 72, the first condition (5.6.5) is a
consequence of the second, provided that Kj,(m) = O(1). The variations for the con-
tinuous parameter z are trivial.
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B. If
™

(1.5) f tK. ()] dt < H,
0
then 1, is a suffictent condition.
C. If |[K,(t)] < K¥X(), K¥(t) ts absolutely continuous, except perkaps
at the origin, and
(1.6) f tK¥ (@) dt <H, |KX(x) <H,

0
then L, is a sufficient condition.

It is plain that k, implies L, and that L, implies /,; on the other hand,
(1.5) implies (1.6) and (1.6) implies (1.4). The condition L,, and a for-
tiort 1, is satisfied, with ¢ = f(6), for almost all 6; so that a method of
summation which satisfies (1.6), and a fortiori one which satisfies (1.5),
is ‘Fourier-effective’, i.e. sums any Fourier series almost everywhere
to its generating function.

When T is (C,0), (C,1), A, then K,,(¢), or K(r,t),T is

__sin(m—+4)t . 1 sin F(m-+1)t)2
Dult) = " 2sindt Fult) = 2(m+1){ sin §t : ’
P(?’, t) = 1—7*

2(1—2rcost+12)’
The last kernel satisfies (1.5); the second satisfies (1.6), and a fortior:
(1.4), but not (1.5); while the first does not satisfy even (1.4). Thus
the A and (C, 1) methods are Fourier-effective. On the other hand, .
classical convergence is not.}

We consider here the kernels of the methods (C, k), (A, 2), (VP), B,
(K, 9).

2. The (C, k) kernel. We prove

THEOREM 253. The (C,k) kernel satisfies the conditions of C, and a
fortiori that of A, for every positive k. It satisfies that of B if k > 1, but
not if 0 < k < 1.

It is a corollary that the (C, k) method is Fourier-effective for every
positive k. We write

}+costtcos 26+4-... = cp+CitCat... = 2 Cp,

+ It is convenient to use r here instead of z.
t HR, 70 (Theorem 79).
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and denote by C% the kth sum-function of 3 c,.t Then

k= ("1 ek

Plainly we may suppose m > 2.

(1) Weestimate K,,(t) for 0 <t < 1/mand 1/m <t < 7. If0 <t << 1/m,
then c¢,, = O(1), C,, = O(m), Ck = O(m*+*), and K,, = O(m), uniformly
in ¢; so that, for an appropriate H,

(2.1) K, < K% =Hm (0<t<1l/m).

When ¢ > 1/m, we use the formulae

? Zc - 1 1—u?
= 21— 2ucosttu?’

Z CE w 1—u? 1
2 1—2u cost+u? (1—u)k+t’

1—u? du
. Ck — . ,
(2:2) i MI 1—2u costt-u? (1 —u)k+lym+l
¢

where C is a small circle round the origin. We may deform C into a
lacet C, formed by the circle [u—1| = p, where p < |1—e¥|, and the
line (14-p,00) described twice in opposite directions, provided we allow
for the residues at the poles w = ex%. Calculating the residues, we find

(2.3) K,,(t) = Q(m)+W(m),
_ P(k4-1)T(m~+1) sin{(m+ 4k §)t—Ybomr}
(2.4) Qm) = Nt k1) @sinqet
_ PE+1)l(m+1) 1 1—u? du
(2.8) Wim) = L(m+k+1) 477@6[ 1—2u cost+u? (1—u)k+lym+l’

It is plain that
(2.6) Q(m) = O(m-¥*-%-1)
uniformly, and we have to estimate W(m).
We take p = 3m-1. Then, for a positive H,
[1—uet¥| = |u—e¥#| > Hi
(since ¢ > m~1) on the circular part of (), and a fortiori on the recti-

linear parts. Also |u|-™-1 is bounded on the circular part. Hence the
circular part contributes

o mt ml 1
0(”“‘ ra m") O(Eﬁ)’

+ C% corresponds to the A% of Ch. V.
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and the rectilinear parts contribute

O(m-k.t2 . fw Z—:) - O{tz(T_l_l)(l +§;—%)‘m“} = O(W—;ﬁ).

1+3mt
It now follows from (2.3)—(2.6) that
(2.7) K (t) = O(m~%t-%-1)4 O(m~1¢-2),

(2.8) K@) < BR(0) = 3H(m %=1 fm~Y-2)  (m-! <t < m),
with an H which we may suppose the same as in (2.1). The K* defined
by (2.1) and (2.8) is absolutely continuous, K*(=) = O(1), and

3k-1
ok

j f| KX | dt = 3H {(k+1 ym*k f %=1 dg +om-1 [ t- dt} <
0 1/m 1/m i
This proves the first clause of Theorem 253.
(2) We now suppose k£ > 1 and estimate K,,(¢). Since K}, is derived
from 0—sin¢—2sin 2¢—... as K,, is from }--cost+cos 2¢-+..., we have
K,.(t) = O(m?) and .

1m 1/m |
(2.9) f K, (t)] dt = o(m2 f ¢ dt) = 0(1).
0 0
When ¢ > 1/m, K,, = Q'+ W’, where Q' and W’ are the derivatives of
Q and W with respect to ¢. Thus, first,
Q'(m) = O(m=*.m.6~%-1)4 O(m-*t-*%-2) = O(m~kt-%-1).
Next,
W'(m) — _P(k+1)I‘(m+ 1) 1 (1—wu?)usint du
- L(m-+-k+1) 2mi ) (1—2ucost-+u?)? (1 —u)k+lym+l’
Hence, if we treat W’'(m) as we treated W(m) under (1), we obtain two
terms, of which the first is

g m mt 1
O(m h.——tr';n-jcjl)z 0(-—?),
and the second is

ol [ 25)=oleslian) ™) ol

1+3m?
It follows that

W/ (m) = Om-4-3),  K.,(t) = O(mi-kt-%-1)1 O(m-14-3),

(2.10) ft]K;n[dt = O(ml—k f t¥ dt)+0(m—1 ft—z dt) = 0(1),
1/m 1/m i/m

since £ > 1. This, with (2.9), shows that K, satisfies (1.5).
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The argument fails when k& < 1, since then the first term in (2.10)
is not O(1), and in fact the (C, 1) method does not satisfy (1.5).f When
k < 0, the method is not regular, and (since summability then implies
convergence) is not Fourier-effective. Kogbetliantz [AEN (3), 40
(1923), 259-323 (276)] has proved that if —1 < k < 1 then

K(t) = O(m)
and K, () = Q(m)-+O0(m—1%-2)
uniformly for 0 <<t < w. The proof may be carried out on the lines
of that of Theorem 253.
3. The (A, 2) and (V P) kernels. For the (A, 2) method
K(r,t) = }+4rcost-+rtcos 2t+r2cos 3t+....
If r=e T (5 >0)
then, for 0 < t < =,

(3.1) K= {4+ f e~mmcog nt =
1

1 < N
e—(an-l) 14n*m
217\/17 Zoo
1 2 2
= e~ATT L O(e-HI),

uniformly in ¢. For summability to c, it is necessary and sufficient that
3
1 f go(t)e 1T di — 0
7
0

when n - 0. The kernel K mimics

— 1 ey’ ,
2gWm

and its derivatives mimic those of L. Also

f ¢ L'(t)| dt = 0(% f t'.;’fz.e—"/‘!"’ﬂ’ dt) = 0(1;‘3 f t2e-Clm'n’ dt) = 0(1).
1] 0 0

Thus the (A,2) method satisfies (1.5). It is easily verified that it
satisfies

(3.2) f 2| K@)t)| dt = O(1)
]

for every p. It follows that, like the A method, it will sum derived
series of Fourier series at points where the generating function has a
derivative, or generalized derivative, of appropriate order.}

+ See HR, 62.
1 Sec HR, 68-9, or Zygmund, ch. 10 (where there is a much fuller account).
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We shall prove in Appendix V that the (A, %) method is Fourier-
effective for every positive .

It is interesting to find a row-finite method which has similar
broperties, and de la Vallée-Poussin’s provides an example. In this case

K, (t) = ;—{ m cosf4- D1 m(m—1) cos 2t--... = 4, (cos }t)¥m,

m-1 (m+1)( +2)
Since cosz < e~ for 0 < z < i, |
f t| K, (t)| {m* f tsin 4t(cos §¢)2m-1 dt}
0

= O(mﬁj t2e—tmt* dt) = 0(1).
0

Thus K,,(¢) satisfies (1.5), and it may be verified that it satisfies (3.2)
for general p.

4. The B and E kernels. Since @, and b, tend to 0, it is im-
material which form of Borel’s definition we choose. Taking the
exponential definition, we have

- " sin(n-4)t  e—z-cosd) _
K@) =e=> 2 2Sin_§ = G st );

and we may replace this, with trivial error, by

{—-le—#(1~cosh gin(x sint).
The kernel does not satisfy (1.4). For e—=(1-cost) — H for 0 < ¢ << z~*
and sin(@sin{)| > H|sinzt|+O(zt?).

It follows that
ot o

J'|K1dt>Hf'S‘“‘””dt+o %)>Hf|5m“’d >0

when z - 0. In fact the method is not Fourier-effective, and does not
sum all Fourier series at points of continuity.

The (E,q) kernel behaves similarly. We suppose ¢ = 1, since it is
only in this case that the formula for K (¢) is simple. Then

 om X0 [m\sin(n4-3)t  (cosity™ . m+1
Cnlt) = 2 mnz:o(n) 2sindt = 2sindt s —— .

It is easily verified that f | K,,(t)] dt is not bounded.




APPENDIX III
On Riemann and Abel summability

1. We prove here three theorems which we have referred to in Chs.
IV and XII, and which may be stated shortly as follows.

THEOREM 254: (R,2)— (A).

TaEOREM 255: (R, 1) = (R,2).

THEOREM 256: (R,) — (A).

They assert relations of complete inclusion between methods of summa-
tion: thus Theorem 254 says that, if a series is summable (R, 2), then
it is summable (A) to the same sum.

There are different proofs of all the theorems. We follow that of
Kuttner, who first proved Theorem 254 in full generality. The method
of proof, by ‘formal multiplication’ of trigonometrical series, was
devised by Rajchmann and developed by Zygmund. It is unlike any
method which we have used so far, but depends on theorems which
we proved in Ch. X. '

We defined the ‘Laurent product’ of two series, infinite in both
directions, in Ch. X. Here we are concerned with trigonometrical series.
We write

A= z a,, em‘ia:, .B = Z bw em’x’
and define C by
C = 3 c,eri=, = 2> a,b,
If a,, and b, are even, and
Apta_, = 2a, = a,, b,+b_, = 2b, = B,,
then c,, also is even, Cpt+C_p = 2¢, = y,, say, and

(g2 COST+...) (BBo+By COSZ+...) = dyyt7, 082+

where Yo =% 2 @uPp
m+n=p .

This is the formal rule for the multiplication of cosine series.t In our
applications, the sums which define the y, will all be absolutely con-
vergent. The product of two sine series is also a cosine series, and that
of a cosine series and a sine series is a sine series: it will not be necessary
to write the formulae down in detail.

1 The formulae agree with those for ‘Fourier multiplication’ in § 10.12: in particular

the formula for y, agrees with (10.12.8)-(10.12.10) if we remember that a, and B, are
even.
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Theorem 193 shows that, if @, = o(1), 3 |n||b,] < o0, and
2 b, " = B(a),
N '3 N .
then > c,er*—B(x) Y a, eVt >0
N X
uniformly in z.t Translating this into the language of cosine series,
we obtain
THEOREM 257. If

&p = o(1), Z nlB’IIl < o, %‘ﬁo'i‘ ZBn COS X = B(x)7
and

Yo = %m.,.zn:pa'"ﬁn = HooBptay Bp—yt-.. oy Bo)+
+i(ops1 BitopieBat o Bpiat o Bpiat- )t
then ot % ¥ COS nx—B(w)(%oco—l— g a,, COS nx) -0
uniformly in x.
There are, of course, corresponding theorems for a cosine and a sine
series or for two sine series.
2. We require a preliminary lemma.

THEOREM 258. If 3 c,(1—cosnx) is convergent for all x of an interval
(o, B), then 3 ¢, is convergent.

We use the formula

(2.1) %wf (l—cosmc)ssin-;rM dzx = B—oa+(cos na--cosnB)@,,
—

B
where
(2.2) Q, = 2(n2 7D} H = F:—&.
Plainly.
(2.3) 0<Q, <<mHn"% (n%> 2H?).

Since ¢, sin?(nz -0 in a set of positive measure, ¢, —~0 and
> nte,| <o0.§

We suppose 3 ¢, divergent and deduce a contradiction. If 3 ¢, is
divergent, then there is a positive & such that

(2.4) | gc,,‘ >3

T See the remark concerning uniformity on p. 235.
1 Remembering that «_, = «,, B, = B,
§ See, e.g., HR, 84.
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for pairs u, v tending to infinity. We can therefore find y, and v, so

that
% el _ (B—a)3,
(2.5) [L% > 2H2, 141 > M1, \%Onl > 8, £ *—1'1,2— < 41TH ’
and then
B iy .
éﬂfz C,(1—cosnx)sin e dy| = lS ¢ {B—a+(cosna+cosnB)@,}
s m ﬂ—*a I
> (B-2)| e, <23 16,10, > w208 > 1] > 3,
a2 (231 a n

by (2.1)-(2.5). It follows that
(2.6) > sinwx%: Z ¢, (1—cosnz)| > %
(2

B
at a point of («,f), and so throughout an interval (a;,8,) interior to
(e, Ig)

We can now choose a second pair p,, vy, With g, > vy, for whieh (2.4)
and (2.5) are true, and deduce that (2.6), with i1, V1, o, B replaced by
Kas V9, oy, By, is true throughout an («,,f,) interior to (o, B1); and we
can repeat the argument indefinitely. We thus determine a sequence
of pairs uy, v, tending to infinity with k, and a corresponding sequence
of intervals (ay, B;), each included in its predecessor, such that

)

ks

n
2 ¢, (1—cosnz)
1

@7

Ve
D ¢, (1—cosnz)| >
(23

throughout (o, 8;). There is at least one # common to ajl these intervals,
and our series diverges for this z; a contradiction which proves the
theorem.

3. We now prove Theorem 254. This is the most important of our
theorems, and we write out the proof in full, then indicating shortly
the points of difference in the proofs of Theorems 255 and 256.

We are given that 3 a, = s (R, 2), and we may suppose (altering two
terms of the series if necessary) that @, = 0, s = 0. Then

F(h) = Y n-2a,sin?inh
converges for small , and F(h) = o(h?); and we have to prove that
2 @, > 0 when r > 1. The proof falls into two parts: we prove first
that the truth of the theorem in two particular cases involves its truth
in general, and then prove the particular cases. It is the first stage of
the proof which depends on Theorem 257.
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Since Y n~2a, is convergent, by Theorem 258, we may write our
series as ’

(3.1) $ao+ X o, cosnk,

where

3.2) «,=—3n%a, (n>0), ay = —2 > a, = > n%a,.T

This series converges to F(k) for small 2. The two particular cases
considered in the proof are those in which {4) the series (3.1)is a Fourier

series, (B) the series (3.1) converges uniformly to 0 in an interval of
h including the origin.

4. We begin by proving that the theorem, if true in cases (4) and
(B), is true generally.

We suppose that (3.1) is convergent and its sum bounded for || < 8,
choose a positive 7 less than 33, and suppose that A(h) is any function
satisfying the conditions (i) A(k) is even and periodic, and has three
continuous derivatives, (ii) A(k) =1 for |k| < %, (iii) A(R) = 0 for
<L b <7 I

(4.1) (k) ~ 3o+ 3 B, cosnh,

then B, = On-3) and 3 n|B,| <. Also a, = o(1). It follows from
Theorem 257 that if

(42) ’ %‘70"'— Z ¥ COS nh

is the formal product of (3.1) and (4.1), then
N N

(4.3) Yyo+ X vn 08 nk—)\(h){%ao—f- > a, cos nh] -0
1 1

uniformly in k. Since (3.1) converges to F(h) for |h| < 27 <3, and
A(h) = 0 for 29 < |k| < , it follows from (4.3) that (4.2) converges
for all %, and to a sum F*(h) defined by
Fh) = F(h) (k] < 7). AB)FG) (¢ <|b| < 20), 0(29<|h| <)
Since F*(h) is bounded, (4.2) is the Fourier series of F*(h).1

If y,=—n?%, (n>0), yo= —22 v, =2 N7,
then (4.2) is related to 3, ¢, as (3.1) is to >a,. Since

F*(h) = F(h) = o(h?)

for small A, 3 ¢, is summable (R, 2) to 0. From this, and our assump-

tion of the theorem in case (4), it follows that Y ¢, is summable (A)

to 0.
t The notation is different from that of § 1.
1 See, e.g., HE, 89.
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On the other hand, since A(k) = 1 for |k| < 7, it follows from (4.3)
that
’%('Vo‘"“o)““ z ('Yn'_an) cos nh
converges uniformly to 0 for || < 7, and that 3 (c,~—a,) is summable
(R, 2) to 0. From this, and our assumption of the truth of the theorem
in case (B), it follows that 3 (c,—a,) is summable (A) to 0. Finally,
since a,, = ¢,—(c,—a,), X, @, is summable (A) to 0.

5. It remains to prove the theorem in the two special cases.

(A). In this case (3.1) is the Fourier series of a function ¢(k). Since
it converges to F (%) for small %, ¢(h) = F (k) for almost all such A, and
we may suppose that this is true for all such . Hence ¢(h) = o{h?).
Now

n_ 1 1—r2
boot 2 o, o8By o f 1—2r cos(ﬁ—h)+72¢(0) a0

for » < 1, the limits of integration being —= and ». Differentiating
twice with respect to &, and then putting 2 = 0, we obtain

Zanlrn = —2 Z nPa, T = -—?T f 711%%%¢(0) af,

where
(5.1) P = 1—2rcos+72, @ = (14+72)cos §—2r(1+-sin6).
Now Q1 < B{(1—r) 463, P> H(1—r)+63

for appropriate H,, H;, and ¢(8) = 0(62). Hence
" (A=r)e* N\ 2dt \ _
Sarm = of [ ) = o( [ s = o0

when r — 1. This proves the theorem in case (4).

6. Passing to case (B), we start from the formulae

1 (1—r2 (1
n - —— —— ——
™= f Vo cosnb) 5 02( )d()

— C@:f_) f (1— cosne)Qdo

where P and @ are defined as in (5.1). It follows that

Sa,m = — 1=7 )z f (1—cosnd) 55 9 - do.

Now, by hypothesis,
oo+ Dy, cosne——Z—-——-z cosn(?—— ﬂ—-cosn“‘

n?
4780
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converges uniformly to 0 for small 8, say for | 0] < ¢, so that the contribu-
tion of the integral over (—{, {) is 0. It is thus sufficient to prove that

(6.1) z %’E‘ f(l—cosn@)% df = o(ﬁ)
¢

for any fixed positive { (and a fortiori to prove it bounded). First,

(5] B

is plainly bounded. Secondly, @/P? and its derivatives of the first two
orders are uniformly bounded in ({,#), and

w

Jn = f cosnd- L go — _sinnt Q) +0(_1_)

Pp3 n  P3(0) n?f’
¢
by two partial integrations; and @, = o(n?). Hence
Onfn _ a,sinng Q(l) 1
(6.2) Z nz T P3(§)+ z 0 n2l

Since Y n~%a,cosnf converges uniformly for 0] < ¢, > n-%a,sinn{
is convergent. Hence (6.2), and so (6.1), is bounded, and this completes
the proof of the theorem.

7. We need only say a few words about Theorems 255 and 256.
In each case the first stage of the proof is like that of the proof of
Theorem 254. In Theorem 255 our data concern the series 3 n-'a,, sinnh,
and we must use the form assumed by Theorem 257 when 4 is a sine
and B a cosine series. In this case the second part of the proof is
trivial. If
(7.1) > n-la,sinnk = F(k) = o(h),

and the series is a Fourier series, then
h
a
(7.2) Z ~2(1—cosnh) = f F(t) dt = o(h?),
[1]

because a Fourier series can be integrated term by term; and if (7.1)
converges uniformly to 0 for small A, then (7.2) is 0 for small A.
In Theorem 256 we are given (again taking s = 0) that

(7.3) > n-%,sin%inh
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converges to F(h) - o(h) for small &, and have to prove that 3 a, 7" —> 0,
i.e. that (1—7) 3 s, 7" - 0. We write (7.3) in the form (3.1), with

a, = —3n-3%, >0, «o=3n%,
and argue as in the proof of Theorem 254. The argument proceeds
much as in §§ 4-6, except that $(f) is now o(9) instead of o(62), and that

the conclusion is
1
2 nzan = O(T:——’):)’
instead of o(1).

8. We add in conclusion that Kuttnert has proved stronger theorems,
viz. that (R, 2) = (C, 2--8) and (R, 1) — (C, 1+4-8) for every positive 8.
There are also theorems bearing in the opposite direction. Thus Hardy
and Littlewood}f proved that (C, —8) — (R, 1), and Bosanquet, Paley,
and Verblunsky§ have proved theorems which include both this and
(C,1—8)— (R, 2). The special cases (C, 0)— (R, 2)and (C, —1)— (R, 1)
are familiar, the first (due to Riemann) being the regularity theorem
for (R, 2) summability, and the second a theorem of Fatou generalized
by Hardy and Littlewood,|| who proved that ¥ a, = s (R, 1) whenever
> a, converges to s and a, > —H/n.

t PLMS (2), 38 (1935), 273-83.

1 PLMS (2), 28 (1928), 301-11 (305).

§ Bosanquet, PLMS (2), 31 (1930), 144-64; Paley, PCPS, 26 (1930), 173-203;

Verblunsky, ibid. 34-42.
| JLMS, 1 (1926), 19-25,



APPENDIX IV
On Lambert and Ingham summability
1. We shall say that 3 a,, is summable (L) to s, or that

o 8, = Gy +ay+...4a,—>s (L)
i
(1.1) F(y) :Za nye™

Pl—e-mw

when y - +0.1 If the series in (1.1) converges for y > 0, then

n+1l

+
\ _ nye~™ d [ yte—¥t
Fo) =2 nd == 25 f zt(m—: a
n

—y f s(Bg(yt) dt = }cfg(é)s(t) &,

where
d( tet 1
g(t) - —_%(-l~e_—")’ S(t) -‘étanr T = ?;">°O:

and we can also write (1.1) in the form

(1.2) % f g(ﬁ)s(t) dt — s.

We saw in §12.9(7) that g(f) is W. Hence, as a corollary of Theorem
233, we obtain (4) if ¥ a, is summable (L) to s, and s, is bounded and
slowly oscillating, or real, bounded, and slowly decreasing, then Y a,
converges to 8. It is this theorem, with e, = n~'u(n), which is used in
the proof of the prime number theorem sketched in the note on §12.11.
The proposition (4) is sufficient for the application, and this is enough
to show the interest of Lambert summability; but (4) is imperfect as
it stands, and we do not state it as a formal theorem. Actually, as we
shall see in a moment, the condition ‘s, is bounded’ is unnecessary,
being a consequence of the other hypotheses.

2. There are two theorems of inclusion connecting the ‘Lambert’
method with more familiar methods.

THEOREM 259. If ¥ a, = s (C, k), for some k, then 3 a, = s (L).
T The phrase was introduced by Ananda Rau, PLMS (2), 19 (1919), 1-20. It is

o0
convenient to begin the series with a,, and 3, will stand for 3, throughout this appendix.
1
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Thus (C, k) = (L). '

In particular, (L) is regular. The proof is straightforward, and we

do not write it out in detail. It depends on a ‘convergence factor’

theorem. If Sa, =s (C k);

faly) is continuous, and f,(0) = 1, for each n; nkf,(y) > O when y > 0

and n->o0; and Y n¥|A¥Yf, (y)| < H, where H is independent of y;
then Y a, f,(y) > s when y — 0. In particular this is true if

fn(y) =f(ny): f(O) =1, f(t) = O(t_k)

for large ¢t and every k, and
f | fEAD(E)| df < o0

for every k. Here we take f(¢) = te~/(1—e).
The second theorem is more difficult.

THEOREM 260. If 3 a, = s (L), then X a, = s (A).f
Thus (C, k) = (L) = (A).

It is plain that Theorem 260 enables us to deduce a Tauberian theorem
concerning summability (L) from any one concerning summability (A).
In particular, after Theorem 106, we have

TaEorEM 261. If Y a, = s (L), and s, is slowly oscillating, or real
and slowly decreasing, then ¥ a, converges to s.

This is (4) of §1, relieved of the superfluous condition that s, is
bounded.

Theorem 260, though a pure Abelian theorem, lies deeper than (4),
its proof demanding the assumption of the prime number theorem
and indeed of rather more. Thus, though (4) is a corollary of Theorem
261, and the prime number theorem one of (4), we cannot base the
proof of the prime number theorem on Theorem 261. We shall assume
that, if

= N K
(2.1) N) = ZT
then
(2.2) 3 n-1|N(n)| < oo.

1 The theorem is proved by Hardy, PLMS (2), 13 (1913), 192-8. His proof may
be simplified by using the theorem quoted, which is due to Bromwich, M A4, 65 (1908),
350-69 (358-9).

1 Hardy and Littlewood, PLMS (2), 19 (1919), 21-9.
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This is true if, as is known,

(2.3) N(z) = Of(logz)-*}.1

We suppose s = 0, and write, for y > 0,
2.4 = —n = nye™™
(2.4) f@) =S ase™,  gly) = D a0
Then

(2.5) g(y) = % nya,, ;n: e =y g % na,e-™ = —y > f'(my),

the inversion being justified by absolute convergence. Hence

10 = 3, wom B2 — 25 E gty 1

[ F F
P e I S Ty

(m+1)y

my

<yt m>yt

say. Now g(u) = O(1), and g(u) = o(1) for small ». Hence
(m+1)y

_ aw) _ (5 1N _
5= °(,,,;'N(m)' mf 2= of 3 ) — e
{ (m+1)1ldu} 0{ | N (m) l} "
8, = “ - 2 = o(1),
: om;w(m)lm{ Rkl

and f(y) — 0.

3. Theorems 259 and 260 are Abelian theorems stating relations of
pure inclusion. It is natural to ask when summability (L) can be in-
ferred from summability (A), and theorems of this kind have a Tauberian
character. The Tauberian condition will be an additional condition on

f@)-

t Actually N(z) = O{(log x)7%} for every k: see Landau, Handbuch, 570, 593-17.

Tt is obvious that (2.3) asserts more than (a) N(x) = o(1), and so (as we shall see in
§ 6) more than the prime number theorem, but it is a little less obvious that (2.2) carries
these corollaries. It is, however, easily verified that (a) is a corollary, not only of (2.2),
but of either of the weaker hypotheses.

(b) 3, n~tN(n) is convergent, (¢) 3 N(n) = o(z),
n<e

the second of which follows from the first by Theorem 26. In fact (c) is N(n) - 0(C, 1),
and N(n), being the partial sum of & series whose terms are O(n™1), is slowly oscillating.
Hence, by Theorem 68, N(n) — 0.

1 By one of the inversion formulae of Mdbius: see, for example, Hardy and Wright,
237.
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TuEoREM 262.7 If 3 a, = s (A), f(y) is defined by (2.4), and
(3.1) f'ly) > —Hy™?,
then Y a, = s (L).

We suppose s = 0. We have

fo)=— [f@yd,  g) =~y 3 fmy),
v

by (2.5). Hence

(m+1)y
(32) S =f@)—gw) =3 [ {fmy)=f'O}dt =T unly).
say. Also "
(m+1)y

¥ =y 3 (Fmy)—fim+ 1)) =3 [ (F'mg)—f"{(m+1)y}) di,
(3.3) "

(m+1)y
T(y) =) —of @ —9@) =3 [ (f{ntDyi—f'(0) dt = Zon(®),

my

say. Now f(y) > 0 and f"(y) > —H/y? and so yf'(y) > 0, by Theorem
101. Hence, in order to prove that g(y) — 0, it is sufficient to prove
that

(3.4) lim S(y) < 0, (3.5) lLimT(y) > 0.
We write
(3.6) S = (3 + 3 Jumle) = S@)+S)

and choose M so that H/M < e. If my <t < (m-+1)y then
fmy)—f'(t) = —(t—my)f’(v),

where r lies between the same limits. It follows that
[(my)—f') < Hm 2y,
and so that
(3.7) Sy) < S Hm2 <HM-' <e.
m>M
Also yf'(y) - 0 with g, and #,,(y) = o(y.y~!) = o(1) for each m. Thus
- 8,(y) > 0 when M is fixed; and this and (3.7) give

iim S(y) < e.
Since ¢ is arbitrary, this is (3.4).

t Hardy and Littlewood, PLMS (2), 41 (1936), 257-70 (258-60).
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To prove (3.5), we argue similarly with T'(y) and v,,(y). In this case,
‘when my < ¢t << (m+1)y, we have

FAm+-1)y}—f(t) = {(m+-1)y—t}f"(v) > —Hm~2%y,

and the rest of the proof follows the same course.
Ifa, > —H/n, then

['y) = 2 nla, e > —H Zne"”” > —Hy2,

- 8o that the condition of Theorem 262 is certainly satisfied.
A second theorem in this direction is

TurEoREM 263.1 If D a, = s (A) and [f'(y)| < H(y), where $(y) is a
positive and decreasing function integrable down to 0, then ¥ a,, = s (L).

Ingham’s method

4. Ingham] has defined a method of summation which is related to
his proof of the prime number theorem (§12.11) much as the Lambert
method is related to Wiener’s. We shall say that > a,, is summable (I)
to s if

(4.1) t(x) 21@2;[2] a, > s
when = - co. The method is not regular, but its relations to the Cesaro
methods are interesting. In particular Ingham has proved that
(C, —8)— (I) = (C,d)

for every positive . Here we prove only

TrEOREM 264. If > a, = s (I), then 3 a, = s (C,1).§

TaEOREM 265. If 3 a, = s (I), then a, = o(loglog ).

We take s = 0 and write
(4.2) b,=mna, B = %zb,,, F(x) = at(zx) = o(x).
Then we have

49  Fw-3bh 31-5 5 b= B

n<x <z/n M<T n<x/m m
< ML/ = <&/ m<zx

1 Anande Rau, l.c. (Theorem 22). His condition (ii) is superfluous, being a corollary
of (i). The short proof given by Hardy and Littlewood, l.c. 259, is fallacious.

1 L.c. under § 12.9. (See Corrigenda, p. 3886.)

§ We shall see in § 6 that (C, —1) — (I) is a corollary of ‘Axer’s theorem’.
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and so, by another of the Mobius formulaef

B(z) = Z p(n)F(Z—i).

n<r

Now .
(44) A%) =3 (@—mja, = > (__1) oj (_ _ 1) dB(u)

x X

__fB(u)d(f_1)= f (u)du,
1
20 {5 uoorfl 2= 3 o [ (5
=;&‘7:L)]’F()d” lf%&”—){z "(")} fF(v)N()d

n<xT/v

“where N(z) is defined as in §2: we make the same assumption about
N(z) as there. It follows that

J‘ B(®) 4., — .[ F(%)N(w) dw = é(fc_l_‘;f)

After (4.2), this is

;j ( )IN(w)Idw+ f ( )IN(w)Idw
1
= o{j w—%-vﬂdw}—}-O{fl—Nio—w” dw} = o(1).

Thus 4AD(z) = o(z), by (4.4), i.e. > a, = 0 (C,1).

This proves Theorem 264, and we can now transfer Tauberian
theorems for summablhty (C) to summablhty (I). In particular we
have

THEOREM 266. If Y a, = s (I), and s, is slowly oscillating, or real and
slowly decreasing, then z a, converges to s.

To prove Theorem 265, we write F(x) in the form

F(x) Z bn = z z ng’

mn<e Q< nlg g<a

+ Hardy and Wright, 236.
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say. Since F(x) = o(x), B, = o(g). Hence, using the most familiar of
the Mobius formulae,t

a0, = b, = > w(Z)fa = o 3 d) = ofeta),

dlg
where o(g) is the sum of the divisors of g. But o(g) = O(qloglogg).,}
and so a, = o(loglog g).
The deduction of the prime number theorem from (12.11.4)

5. We have taken it for granted, in §12.11 and elsewhere, that the
prime number theorem can be deduced from (12.11.4) by elementary
reasoning. This was proved by Landau in 1911,§ but the proof is not
given in any book. The deduction depends on an important elementary
theorem which we shall call ‘ Axer’s theorem’.||

THEOREM 267. If (a) x(x) is of bounded variation in every finite
interval 1 <z < X,

®) 3 an=ol),

and either of the pairs of conditions
(c1) x(z) = OQ1), @a1) nzx la,| = O(z),
(c2) x(®)=0@*) (0<a<l), (@2) a,=0(),

18 satisfied, then a x('f) = o(x).
We suppose 0 < & < 1, and write
(5.1) S@) = > ax(Z) = 3+ 3 =815
n<dz  dz<n<z

n<x

say. Then, if 4, = 0, a;+a,+...4+a, = 4, we have

S, = Z (An_An—l)X(z)= Sl: (A”_A"_l)x(g)

dx<n<z n=[8x]+1
[x]—-1 . z
= —AISx]X('_x—)+A[z]X(—a‘:’)+ An{x(:f)—x(—)}-
[8z]+1 [x] n=[ZSxI " n, n+1
[x)—1
7 z x z
Now [8]2“ "(ﬁ)"‘(n"+“‘l)" i) e
+ Hardy and Wright, 235. 1 Tbid. 264,

§ WS, 120 (1911), 973-88. For the converse inference see Landau, Handbuch, 588-90.

Il The actual theorem proved by Axer [PMF, 21 (1910), 65-95] is Theorem 267, with
x(z) = z—[z] and a, subject to (b) and (d 1). It is the second form of the theorem,
with conditions (¢ 2) and (d 2), which is most important here. The arrangement and
proof are Ingham’s. (But see Corrigenda, p. 386.)
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are, after (a), all less than functions of 8 only. Thus
(5.2) 18] < o(x) P(3),
where P(8) depends only on 8.
If conditions (c 1) and (d 1) are sa.tlsﬁed then
I8 <H 2 la,| < Héx

n<ox

for a fixed H. If conditions (¢ 2) and (d 2) are satisfied, then

x o
S <H Y (_) < Har(da)i-= = Ho-%.
7
n<dz
In either case we can choose 8(¢) so that |S;| < ex; and then, after (5.2),
choose Z, = %o(8, €) = Zo(€) so that |S,| < ex for x >z, It follows
that S(z) = o(x).

6. The prime number theorem is equivalent to §i(z) ~ , where

(6.1) () =an A(n) = gz log p;
Am) _ ['(s)
and > = T

for Rs > 1.t Thus if

B = ~ 5t =3 2,

then ¢ = 2y—1, ¢, = A(mn)—1 (n>1),
C@) = 3 e = 3 (A —1+2y = $@) 1+,

and the prime number theorem is equivalent to C(x) = o(x). Also

H(s) = g55{— V)= Do)+ 278(6)} = Flo)G),
where
a, -
(6.2) F(s) = C(s) =D a,=pm),
(63) 66) = — L)L)+ 2086 = >, 2,

so that b, = logn—d(n)-+2y, where d(n) is the number of divisors of
n.} Thus, assuming (12.11.4), we have

(6.4) A(r) = Z a, = Z pn) = M(x) = o),
B(x) - anbn —ngx log " nga:d(n)-i_%ynzx .

t See Hardy and Wright, 252, 344 et seq. 1 Ibid., 249.
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The first sum in B(x) is zlog z—x+ O(log z); the second is
zlog x+(2y—1)z+O(vx),
by a familiar result in the theory of ‘Dirichlet’s divisor problem’;T and
the third is z+0(1). It follows that
(6.5) B(z) = O(wk).
Now from H(s) = F(s)G(s), ie. Jec,n = >a,n*> b, n* it
follows that

O@w) =3 ca= 3 auby= S ay 3 b, = ZamB(%).

mn<z m<x n<z/m

Here (1) B(z) is of bounded variation in any finite interval (1,X);
(2) A(x) = o(x), by (6.4); (3) B(x) = O(vz), by (6.5); and (4) a,, = O(1).
Thus the conditions (a), (b), (¢ 2), and (d 2) of Theorem 267 are satisfied,
and so C(z) = o(z). Thus the prime number theorem is a corollary of
(6.4), and a fortiori of the convergence of 3 n-1u(n).}

Here we have used the second form of Theorem 267. As an example of the

use of Axer’s theorem in its original form, we prove the implication (C, —1) = (I).
Rather more generally, we prove

THEOREM 268. If 3 a, converges to s, and na, > —H, then 3 a, is summable
(I)tos.

For then (taking s = 0)
(6.6) > na, = o(z), 2 nlay) = 3 na,—2 I na; = O(x),
n<e n<e n<ae n<x

and therefore, by Theorem 267,

(6.7) Z na,,(%—[g]) = o(),

n<e
Z g[;]“" =”§man+0(l) = o(1).

n<e
As a further example, if a, = n~1u(n), then the first of (6.6) is (6.4) and the
second is trivial, and (6.7) follows, by Theorem 267. Also

Z m( n)[ ] ptn) = ZMEM#(n) =1,

n<e
since the inner sum is 1 when ¢ = 1 and 0 otherwise. It follows from (6.7) that

.S H

n<z
i.e. that 3 n~'u(n) converges to 0. Thus this is an elementary consequence of
(6.4).

1t Hardy and Wright, 262.
I See the footnote to p. 374. On the other hand, the prime number theorem implies
X ntu(n) = 0, Landau, Handbuch, 591-3.




APPENDIX V
Two theorems of M. L. Cartwrightt
1. If Ya, =s(A,p)ie. if

(1.1) Sa,e v >s
when y > 0, and 0 < ¢ < p, then > a, = s (A,q), i.e.
(1.2) S a,e v >3,

provided only that the series (1.2) converges for y > 0. We prove this
here, in a more complete form and with a companion theorem in the
opposite direction.

If y = re® and (1.1) holds uniformly in the angle

(1.3) <o <0< oy <im,

then we shall say that

(1.4) Sa,=-s (A,p, )

We shall prove
TaEOREM 269. If

(1.5) p>0, g=kp, 0<k<]1,

(1.4) s true, and > a, e=v™" is convergent for y > 0, then

(1.6) 2 a, =35 (A,q,B,B)

Jor

(1.7) —drtk(irtoy) < By < By < Ir—k(Fm—ap).
THEOREM 270. If

(1.8) p>0, q=kp, k>1,

(1.9) ag—0y > 17(1 -—%),

and (1.4) s true, then (1.6) <s true under the conditions (1.7).

Some preliminary remarks are desirable.

(1) In Theorem 269, 0 < ¢ < p, and the theorem includes that cited
at the beginning of the section. The convergence of Y a,e v, for
y > 0, must be taken as a hypothesis. In Theorem 270, ¢ > p. The
convergence of > a,e~v"” for y > 0, implied in (1.1), carries with it
that of 3 a, e~¥™, so that no hypothesis concerning this is needed.

t M. L. Cartwright, PLMS (2), 31 (1930), 81-96 (where the method of proof is
different).
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(2) It is plain that the range (B,,B;) prescribed by (1.7) always lies
ingide (—4m, 7). If £ < 1 then

—irt+k(rto)—a = —(1-k)3r+o) <0,

so that —jnpk(ir+o;) < op; and similarly dr—k(3r—oy) > .
Thus (B,,8,) may extend beyond («;,a,;) at each end: the angle of
summability in the conclusion is greater than that in the hypothesis.
We may suppose o; = a,, in which case the hypothesis asserts (1.1)
along one line only.

If ©>1 then —in+k(3mt+og) > o and dn—k(jr—oy) < ay, S0
that (B,,B,) lies inside (o, ®;) at both ends, and the angle of summa-
bility in the conclusion is smaller than that in the hypothesis. The
hypothesis (1.9) is equivalent to

—ir+k(3r+toy) < fr—k(3r—ay),
and is essential to the conclusion. All this is in harmony with the
general principle stated in §4.12. If ¢ < p then the (A,q) method is
less powerful than the (A,p) method, and therefore less likely to be
‘applicable’, but, if applicable, it is more effective.

2. We need a lemma concerning the Fourier transform of e—".
THEOREM 271. If

<]
A, x=red, F(z) = fe—‘k cos xt dt
0

w

k>0, ok

for positive x, then (1) the analytic function F(x) defined by the integral is
regular for |8] < A, (2) F(z) = O(1) for small x, and (3) F(zx) = O(r-1-%)
for large x, each of (2) and (3) holding uniformly in any angle
10 < A—e <A

If k > 1, then F(z) is an integral function and (1) and (2) are trivial.
If k = 1, then F(x) = (1+2%), the integral converging for |3(z)| < 1.
If k < 1, then the integral for F(x) is convergent only for real . But in
any case we have

F(z) = -912 f e~U=F cost dt,
first for positive x and then for coskf > 0, i.e. for |#] < A. Also
IF(x)I < :_l. j e~irfcoskA—e) gy
r

for || << A—e¢, so that (2) is true for k > 0.
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Next, for positive z,

2F(x) =z f ecosxtdt =k f e~tk-1gin xt dt
= _I_c_ P dt—k, e-ttk-1e=i=t gt = xFy(x)—xFy(x),
2 2
say. Still supposing that z is positive, we have
k _ it 1e
2F(x) = 2iF f e~=Fik-1¢i dt;

and we may take the integral along the line ¢ = pe’#, where ¢ is
small and positive. The integral is then absolutely and uniformly con-
vergent for z in any angle 8| < A—¢$—» < A—¢, and represents 2 F, (¥)
throughout |6 < A—¢; and

' T(1+k)
k ) (14 .
k+1 il k-1p8t Jt — ki
x Fl(x)»%J te-let dt T
0
when z tends to infinity, uniformly in || < A—¢—=. Similarly, using
a path of integration below the real axis, we see that

Ak +1Fy(x) - D(1+k)e-mi,
uniformly in the same angle, and (3) follows.

3. Passing to the proof of Theorems 269 and 270, we have
(3.1) e = gf F(t)cos(yY*nPt) dt = 1 f F(t)etrt alt+1 J F(t)e-i¥t dt,
T T k)

ify>0and Y = yWknr, If { = pe'd, 0 < ¢, < 7 and —7 < ¢, < 0,
then arg(—¢Yt) and arg(:Yt) lie between —}m and 4w for 0 < $ < ¢
and ¢, << ¢ << O respectively. If also

(3.2) (1] <A—e, [fs| < A—e,

then it follows from Theorem 271 and Cauchy’s theorem that we may
replace (3.1) by

(3.3) e-vnt _1_ fF(t)em dt _|_l f F(t)e-i¥t dt,
o kul
01 Cg
where C, and C, are the radii ¢ = ¢, and ¢ = ¢,. It also follows that

(3.3), proved at present only for ¥ > 0, is true for complex y = re®,
and ¢,, ¢, satisfying (3.2), and

(4) —dr < —driith<in b <irtptd <ir
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(instead of 0 <C b, <, —7r < ;< 0). 4 fortwn it is true if

<
(35) < —drtith<e w<irtoth<a

and ¢, and ¢, satisfy (3.2).

Let us assume provisionally that, when 8, << § < B,, we can choose
é = ¢,(0) and ¢, = Py(f) so as to satisfy (3.2) and (3.5). Let
7 = exp{}(x;+o,)i}, and take § > 0. Then

(3.6)
Sa, e vni-bm? — f Za e n () dt 4 - f Z a, e-""nF(t) dt = x;+ Xa»
say, where 2, = dr—uylke, 2y = 8-r+zg1/"t,

provided that we can justify the summations under the integral sign.

If 2z, = 87+ Z,, then arg Z, lies in (a;,a,), and 2, lies in the angle
D(3) whose vertex is at 8 and whose sides make angles o, and o, with
the positive real axis. Thus, if 8,y are fixed, 3 a@,e " converges
uniformly on arg ¢t = ¢,; and

[1Fa)
C,

is convergent. It follows that the term-by-term integration in x, is
legitimate, and that in y, may be justified similarly.
Next, f,(2) = 3 a, e~ is, by hypothesis, uniformly continuous in
D(0), and therefore, by Theorem 31,
fly) =2 e = %11_}!{); > a, e v-sm

=1 [n-iymre @+ [ pemored,
Cs

if the series 3 a, e~V is convergent (a hypothesis needed only when
q < p, k < 1, as we pointed out in §1).

Finally, f,(—iy"*) and f,(i5"/*t) tend uniformly to s, when y — 0 in
the angle B, < 8 < B, and || is bounded, and are uniformly bounded
in the angle, for all {t|; and

[1Fo1a, [ 1F@)d
Cy C:
are bounded and uniformly convergent for ¢,, ¢, satisfying (3.2).

Hence fy) > —( f f)F(t) dt = — f F)ydt =s

uniformly in B, < 0 < B,.
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It remains to justify our provisional assumption that ¢, and ¢, can
be chosen so as to satisfy (3.2) and (3.5), and for this purpose we may
take ¢ = 0. Considering the inequalities for ¢;, we have to show that
$, = ¢,(0) can be chosen so that

0 g
—-é}c<¢1<—2%, “1+%"~E<951<0‘2+%ﬂ—7c~

This is certainly possible if

0 0
mtdr—r <o, —gp <eetdr—g
ie. k(o) < 0 < dr+k(mtay),

and a fortiori if B; < 8 < B,. Thus ¢,, and similarly ¢,, can be chosen.

4. It may be useful to add a short statement of the principal
properties of F(x): Theorem 271 contains only the minimum necessary
for the proof of Theorems 269 and 270. If k > 1 then

(4.1) P >“k2 ((2"13:" (2m+1) zm

is an integral function. It has an asymptotic expansion

(4.2) Z (= ;):" (o 1)sin 3 k-1

valid in the sectors [argz| < A and |arg(—z)| << A. This series vanishes
identically when &k = 2, 4, 6,..., and in this case F(z) is exponentially
small for large z in the sectors, and all its zeros are real. In any case
it is exponentially large in the remaining sectors. The exponential
approximations may be found by the saddle-point method.

When k < 1 the integral for F(x) converges only for real z; but the
series (4.2) is convergent, and F(z) = z~1G(x~*), where G(w) is integral.
In this case the series (4.1), now divergent, represents F(z) asympto-
tically for small z with |argz| < A.

When 0 < k < 2, F(zx) > 0 for positive z.

Fuller information, and references, will be found in Pélya, MM, 52
(1023), 185-8; Wright, JLMS, 10 (1935), 286-93; and PTRS, 238
(1940), 423-51, and 239 (1946), 217-32.

5. Finally, we add a few words concerning the application of the
(A, q) method to Fourier series. The main theorem is
TarOREM 272. The (A, q) method is Fourier-effective for every q.

4730 ce
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We need an extension of the ordinary theorem concerning A or
(A, }) summability, viz.

THEOREM 273. If f(¢) satisfies ], for t = 0,1 and —in < oy < oy < %,
then the Fourier series of f(t) 1s summable (A, 1,0y, ), for t =6, to c.
In particular this is true, with ¢ = f(8), for almost all 6.

We leave the proof, which is similar to the ordinary proof of A
summability, to the reader.} Theorem 272 is a corollary. We can
choose « so that

0 <3m—q(im—a) < ir
(as is always possible by taking « near enough to 3=). Then the Fourier
series is summable (A,1, —a,«), by Theorem 273; and therefore, by
Theorem 269, summable (A, g, —B, B) provided that

0 <B < ir—q(ir—a).
In particular, it is summable (A, g).

t i.e. (1.2) of Appendix II.
1 It is only necessary to show that if

. 1—e-%
K(y,t) = 3+ 3, e~ cosnt = S(1—Zevoostt o)’
y = utiv, v=utany, xl < x0 <
n
2K
then f Itﬁl dt < H,
-

where H depends only on x,. See Appendix II,

CORRIGENDA

p. 286. The statement that ‘any h of L can be expressed in the form (12.2.1),
with an r of L’ is false, since H(t)/G(t) = R(¢) > 0 as |t| > c0 whenever r is L
(Titchmarsh, Fourier transforms, Theorem 1). But in the relevant theorem
(Theorem 229) h is restricted so that H(¢) = 0 for large |¢].

p. 376. A summation method equivalent to Ingham’s method, (I), was given
earlier by A. Wintner, Eratosthenian averages, Baltimore, 1943.

p. 378. The extension of ‘Axer’s theorem’ given as Theorem 267, and indeed
with the more general conditions (c 2), (d 1) in place of the alternatives (¢ 1),
(d 1) or (¢ 2), (d 2), is included in & theorem of E. Landau, RP, 34 (1912),
121-31, Satz 5.
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Convergence, 1.

Convergence preserving transformation
(see class F).

Convex cover, 55.

Difference, A, A¥, 97-8 (see also note on
conventions).

Dilution of series, 59.

Dirichlet multiplication, 227, 239.

Divergence, 1.

Equi-convergence, 234.
Equi-summability, 235.
Equivalence, 66.

Euler mean, 180.
Euler—Maclaurin constant, C, 327.
Euler-Maclaurin rseries, 341.

Euler transform, 179.

Faltung (see resultant).

Finite order, 211.

Fourier-effective, 360.

Fourier multiplication, 240,
Fourier transform, R ~ r, 285, 287.

Inclusion, 66.
Integral transformation, 50.
Inverse transformation, 105.

Kernel :
Fourier, 359;
Knopp, 55;
Wiener (see classes W and W*).

Laurent multiplication, 240.
Limitation theorem, 57.
Linear transformation, T, 42.

Matrix of transformation T, |T} = (cp..)

Mittag-Leffler star, 77.
Moment constant, 81, 256.

Normal Borel summability, 184.
Normal discontinuities, 257.
Normal positive transformation, 55.

Polygon of summability (see Borel poly-
gon).
Positive transformation, 52, 54.

Regular Borel summability, 184.
Regular moment constant, 256.
Regularity, 10, 43.

Restricted convergence, 240.
Resultant, 98.

Semi-convergent series, 328-9.

Slowly decreasing, slowly oscillating, 124,
286.
Strength, 66.
Stronger (see strength).
Summability of integrals, 10-11: (A), 11,
136; (C, l)r 11; (C, k)s 110; (G)n
11; (H, ), 110; (R,), (R, 2), 301.
Summability of series, 6-7, 56-7:
Abel summability, (A), 7;
Abelian means, (A,2), (A, k), 71;
(A, A @), 76; (A, p, oy, o), 381;
Borel’s exponential method, (B), 80;
Borel’s integral method, (B’), 83;
generalized Borel methods, (B’, ), 83;
(B*),192; (B’; C, k), 237; (B, k), 246;
(B2), 346;
Cesaro means, (C, 1), 7, 94; (C, k), 96-7;
Circle method, (y, k), 218;
(e, ¢) method, 214;
Euler’s € method, (€), 7;
Euler’s E methods, (E, 1), 7; (E, g¢), 178,
180; (E’ q; C, k); 236;
Hausdorff means (transformations),
9, (5, ), 249;
Hoélder means, (H, k), 94, 252;
Hutton’s method, (Hu, k), 21-2;
Ingham’s method, (I), 376;
Integral function methods, (J), 79-80;
Lambert summability, (L), 372;
Le Roy’s method, 79;
Lindel6f’s method, (L), 77;
Mittag—Leffler’s method, (M), 79;
Moment constant methods, (1), 82;
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Summability of series (contd.): Tauberian condition, 149.
Nérlund means, (N, p,), 64; harmonic | Tauberian theorem, 121, 149, 283-5.
_means, (N, (n+1)7), 110; Total regularity, 10, 53, 63.
(N,_p n) method, 57; logarithmic means, Totally monotone sequence, 253.
(N, ('n+ l)—1)9 59;

¢ method, 72; Transform of a sequence, 42.
¢l ’ .
quasi-Hausdorff transformations,(H*, 1), Transformation 3, 247; 8%, 277.
278; Triangular transformation, 53.

Ramanujan’s method, (R, a), 327;
Riemann’s methods, (R, 2), 88-9; (R, k), . Lo
89; (R,), 89; Uniformly distributed sequence, 115.
Riesz’s typical means, (R, A, k), 86; | Unrestricted convergence, 240.
arithmetic means, (R, n, k), 113;
Valiron’s methods, (V, H), 223-4;
de la Vallée-Poussin’s method, (VP), 88. | Weaker (see strength).
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Abel summability, 7; Fourier kernel, 88,
360; inclusion, 108, 365; integrals, 11,
136 ; regularity, 10, 73, 108, 151; Tau-
berian theorems, 148 et seq., 283, 299—
300, 375-6.

Abelian means, 71, 76, 381 et seq. ; Fourier
kernel, 363; inclusion, 73-6, 381-5; regu-
larity, 73, 76; Tauberian theorems (see
Dirichlet’s series).

Abel’s theorem on multiplication of series,
228 ; on power series, 10, 73, 108, 151.
Absolute summability: Borel, 184; |C, k|,

147; |E, q|, 237.

Alternating series, 233.

Alternation round a number, 328.

Analytic continuation, 186 et seq.

Asymptotic series, 27-8, 37-8, 191 et seq.,
328.

Axer’s theorem, 378.

Axioms of summability, 6; Borel, 183;
(C, k), 102; (E, q), 180; (H, k), 95.

Bernoulli’s functions, 320 et seq.; asso-
ciated periodic functions, 321-2; num-
bers, 320 et seq.

Binomial coefficients (see note on conven-
tions); series, 136 et seq., 201 et seq.;
generalized series, 39.

Borel’s methods, 79 et seq., 182 et seq.;
Abelian theorems, 184 et seq.; equiva-
lence, 183, 216; Euler-Maclaurin series,
341 et seq. ; Fourier kernel, 364 ; generali-
zations, 83, 192, 237, 246, 346; inclusion,
183; multiplication, 237; overconver-
gence, 206 ; polygon of summability,187;
regularity, 80, 82-3, 182; Tauberian
theorems, 208 et seq., 312-14.

Cartwright’s theorems, 381-5.

Cauchy’s rule, 227; limit theorem, 10;
theorem on multiplication of series, 228.

Cesiiro means, 7, 96 et seq.; boundedness,
98; conditions for summability,122,132—
5; convergence factors, 128 et seq.; con-
vexity theorems, 127, 300; equivalence,
103-5, 113, 264 ; Fourier kernel, 88, 360;
as Hausdorff means, 248-51 ; inclusion,
100-1, 108-10, 270, 372-3, 3767 ; infinite
limits, 107; integrals, 110, 135; limita-
tion, 101-2; multiplication, 228 et
seq. ; as Norlund means, 109; regularity,
10, 101 ; séries indéterminées, 8 ; special

series, 136 et seq.; Tauberian theorems,
101, 121-7, 299-300.

Circle method, 218.

Classes: L, L' (see note on conventions);
kcs lcy Lg; M’ ‘«B; Qy m, z’ Zc, zc*’ sf’
U, W, W* (see list of definitions).

Commutability, 104, 249.

Consistency, 65, 84.

Continuity of sum, 349.

Convergence, 1; convergence factors, 128—
32, 373; convergence preserving trans-
formation (see class I;), 43, 256, 260;
restricted and unrestricted convergence,
240.

Convex cover, 55.

Convexity theorems, 127, 300.

Differences, 978 (see note on conventions).

Differentiation of divergent series, 349-50.

Dilution of series, 59-60.

Dini’s theorem, 47.

Dirichlet multiplication, 227, 239.

Dirichlet’s series: Tauberian theorems,
153, 161; ‘high indices’ theorem, 172-4.
(See also Abelian means.)

Divergence, 1.

(e, ¢) method, 214 et seq.

Equi-convergence and summability, 234~
5.

Equivalence, 66; (C, k) and (H, k), 103, 264;
(C, k)and (R, n, k), 113; (R, log (n+41),1)
and (N, (n41)71), 87.

Conditioned equivalence: (B)and (B’),
183; (B) and (e, 3), 216, 219-20; (B, ),
(B',a), (e, ), (E, @), (¥, k), 217-22; ($, )
and (5’ ].L'), 262-3; (Ny pn) and (N, qn)’
67; (R,) and (C, k), 301, 305. (See
also Tauberian theorems.)

Integrals: (C, k) and (H, k), 112.

Euler—-Maclaurin sum formula, 318 et seq.;
complex method, 339; constant, 327,
336; generalization of formula, 335;
Poisson’s method, 330; series, 341;
summability of series, 341-5.

Euler’s methods, 7, 178 et seq.; (E, q)
mean, 180; (E, g) mean as Hausdorft
mean, 248; Fourier kernel, 364; inclu-
sion, 179, 183; limitation, 181; multi-
plication, 236-7; regularity, 71, 179;
transform, 179.

Euler’s numbers, 3; principle, 8.
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IXxponential sories, 200 et seq. ; generalized
series, 37-8.

Faltung (see resultant).

Tinite order, 211.

Fourier-effective, 360, 385—6.

Fourier’s theorem and formulae, 29 et seq.,
331; kernels, 87-8, 359 et seq.; multi-
plication, 240 et seq. ; transforms, 285 et
seq.

Hadamard’s gap theorem, 206-7.

Harmonic means, 110.

Hausdorff means (transformations), 247
et seq.; consistency, 262; continuous
transformations, 275-7; equivalence,
262-3; inclusion, 262, 268-71 ; inequality,
273; moment constants, 256 et seq.;
quasi-Hausdorff transformations, 217-80;
regularity, 252-6, 260.

Hausdorff’s theorem, 258-60.

‘High indices’ theorem, 172—4.

Holder means, 94 et seq.; equivalence,
103-5, 264 ; as Hausdorff means, 250-2;
inclusion, 95; infinite limits, 107; in-
tegrals, 110; limitation, 95.

Hutton’s method, 21-2.

Inclusion, 66 ; Abelian means, 73-6, 381-5;
(B) —> (B’), 183;(B’; C, k) means, 237-8;
(C, k) means, 100-1; Cesaro and Haus-
dorft, 268-71 ; Cesaro and Nérlund, 109-
10; Cesaro and Riemann, 371; (C, k) -
(A), 108; (C,k)—> (L)—>(A), 372-4;
(C, —1)=> (I) = (C, 1), 376-7, 380; (¢, c)
methods, 218-20; (E, ¢) methods, 179;
(E, q) —> (B), 183; (7, k) methods, 218;
Hausdorff methods, 262; (H, k) means,
95, 264; infinite limits, 107; Noérlund
means, 66-70; (N, p,) means, 58;
(R, 1)=> (R, 2)—>(A), 365 et seq.;

“(Ry) —> (A), 365 et seq.

Incomparability: (B) and (C, k), 213;
(C, k), and (E, q), 266.

Infinite limits, 107 (see also total regula-
rity.)

Ingham’s method, 376 et seq.

Integral function methods, 79-81.

Integral transformation, 50.

Integration of divergent series, 349.

Inverse transformation, 105.

Kaluza's theorem, 68-9.

Karamata’s method, 156 et seq., 165 et
seq.

Kernel: Knopp, 54-6; Wiener (see classes
W and W*), 283 et seq.; Fourier, 87 et
seq., 359 et seq.

Knopp’s kernel theorem, 55.
Kronecker’s theorem, 73.

Lambert summability, 372 et seq.

Laurent multiplication, 240 et seq.

Le Roy’s method, 79.

Lebesgue—Stieltjes integral, 274.

Legendre series, 271.

Limitation theorems: (C, k), 101-2; (E, g),
181; (H, %), 95; (I), 376; (N, pn)’ 66;
(N, p,), 57.

Linear transformation, 42.

Littlewood’s ‘O’ theorem, 154.

Logarithmic means, 59, 87.

Matrix of a transformation, 42.

Mercer’s theorem, 104, 106-7, 263—4.

Mertens’s theorem, 228; generalizations,
230, 239; analogues, 238, 241-2.

Mittag-Leffler’s method, 79; star, 71, 190-
1.

Moment constant, 81 et seq., 256 et seq.;
moment constant methods, 81 et seq.;
regular moment constant, 256.

Multiplication of integrals, 235-6.

Multiplication of series, 227 et seq. ; Borel,
238 ; Cesaro, 228 et seq. ; Dirichlet, 239;
Euler, 2367 ; formal, 234 ; Fourier, 240;
Laureut, 240.

N_iirlund means, 64 et seq., 109-10

(N, p,) means, 57 et seq.

Normal Borel summability, 184; normal
discontinuities, 257; normal positive
transformation, 55.

Normalizing conditions, 256.

Ostrowski’s theorem, 207.
Overconvergence, 206-7.

¢ method, 72.

Partial sum, 1.

Phragmén-Lindelsf theorems, 194.

Poisson’s definition, 17.

Polygon of summability, 187.

Positive transformation, 52 et seq.

Prime number theorem, 303—4, 378-80.

Principle of ‘power and delicacy’, 59, 80;
of repeated limits, 89-91.

Quasi-Hausdorff transformation, 277-80.

Reamanujan’s method, 327, 346-7.

Regular Borel summability, 184; regular
K-method, 359; regular moment con-
stant, 256 et seq.
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Regularity, 10, 43, 49, 57, 61; (A), 10, 73,
108, 151; (A, }), 73; (A, A, @), 76; (B),
80,182; (B’),(B’, «), 82-3,182; (C, k), 10,
101; (E, g), 71, 179; (9, p), 252 et seq. ;
continuous § transformations, 276;
integral function methods, 80; moment
constant methods, 82; (N, p,), 64;
(N, pn)i 57; (5*, I")y 278-9; (R’ k), 89;
(Rg), 89; (R, A, «), 86.

Repeated differentiation, 170 et seq.

Restricted convergence, 240.

Resultant, 98.

Riemann’s methods, 88-9, 301 ; inclusion,
365 et seq. ; Tauberian theorems, 301-2,
305, 312, 314.

Riemann-Stieltjes integral, 151, 157.

Riesz’s arithmetic means (see Riesz’s typi-
cal means).

Riesz’s typical means, 86-7; arithmetic
means, 112-14; equivalence, 113-14;
regularity, 86; Tauberian theorem, 124,

Semi-convergent series, 328-9.

Slowly decreasing and slowly oscillating,
124, 286.

Stieltjes(-Laplace) integrals, 151 et seq.;
Abelian theorem, 151 ; Tauberian theo-
rems, 152, 160, 164 et seq.

Stirling’s theorem, 320, 329, 333-5 (see
also note on conventions).

Strength, 66.

Strong convergence, 288.

Summability (see list of definitions).

Summability of special series: T (—1)%, 9,
13-14, 59, 73,77,85; X =z, 80, 83, 222-3;
2 (—1)"*n!2"?, 26-9, 192; binomial, 136 et
seq.; X n*ef, 139-41; T n—tedin®, 141-
6; T a1, 59, 139-40, 163-4.
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‘Tails’, 215.

Tauberian condition, 149, 285.

Tauberian theorems, 121, 149, 283-5; (A),
148 et seq., 283, 299-300, 375-6 ; Borel,
208 ot seq., 312-14; (C, %), 101, 121-
7, 299-300; (e, ¢), 215, 221; (E, gq),
208, 215, 221; (y, k), 221; (1), 377;
integrals, 126, 135; Lambert, 373;
(R, 2), 302, 314; (R,), 301, 305, 312;
(R, A, 1), 124; (V, H), 224.

Tauber’s first theorem, 149; second theo-
rem, 150.

Toeplitz’s theorem, 43 et seq.

Total regularity, 10, 53, 63.

| Totally monotone sequences, 253.

Transform of a sequence, 42.
Transformation 8, 247 ; 8%, 277.
Triangular transformation, 53.

Uniform summability, 84, 184 et seq., 349—
50.

Uniformly distributed sequences, 115 ot
seq.

Unrestricted convergence, 240.

Valiron’s methods, 223-4.

de la Vallée-Poussin’s method, 88 ; Fourier
kernel, 364.

Vijayaraghavan’s theorem, 305-12.

Wiener’s Tauberian theorems, 283 et seq.;
conditions W and W*, 285-6, 294 et
seq.; ‘key theorem’, 286, 296; second
theorem, 294, 297.

Zeta-function, 23 et seq., 332-3.
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